
Souza et al. Landsat sub-pixel land cover dynamics in the Brazilian Amazon
Este estudo propõe uma nova abordagem para caracterizar e medir a dinâmica da cobertura do solo no bioma Amazônia. Primeiro, definimos 10 classes fundamentais de cobertura do solo: floresta, floresta inundada, matagal, pastagens naturais, pastagens, terras agrícolas, afloramentos, nus e impermeáveis, zonas húmidas e água. Em segundo lugar, mapeamos a cobertura do solo com base na abundância composicional das informações de subpixel do Landsat que compõem estas classes de cobertura do solo: vegetação verde (GV), vegetação não fotossintética, solo e sombra. Terceiro, processamos todas as cenas Landsat com <50% de cobertura de nuvens. Em seguida, aplicamos um algoritmo de aprendizado de máquina florestal aleatório passo a passo e regras de decisão empíricas para classificar as classes de cobertura do solo intra-anual e anual entre 1985 e 2022. Finalmente, estimamos as mudanças anuais na cobertura do solo em ecossistemas florestados e não florestados e caracterizamos os principais impulsionadores da mudança.

Baeza et al. Two decades of land cover mapping in the Río de la Plata grassland region: The MapBiomas Pampa initiative
O trabalho descreve e analisa as mudanças na cobertura da terra em toda a região de Campos do Rio da Prata (RPG) nas duas primeiras décadas do século XXI, especialmente aquelas relacionadas à perda dos campos. Em 20 anos, a região do RPG perdeu pelo menos 2,4 milhões de hectares de campos naturais (9% da área remanescente de campos existentes em 2001). A maior parte dessas perdas está concentrada no Brasil e no Uruguai e está associada a novas áreas agrícolas ou de silvicultura que aumentaram 5% e 100%, respectivamente.

Alencar et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning
O artigo apresenta uma nova estratégia com uso de aprendizado de máquina para mapear áreas queimadas mensalmente de 1985 a 2020, usando mosaicos de imagens Landsat e valores mínimos de NBR. Este novo conjunto de dados contribui para o entendimento da dinâmica espacial e temporal de longo prazo dos regimes de incêndio que são fundamentais para projetar políticas públicas apropriadas para reduzir e controlar os incêndios no Brasil.

Cayo et al. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine.
Este artigo apresenta o mapeamento e a dinâmica de recuo das geleiras tropicais andinas (TAGs) a partir da utilização de imagens da série temporal Landsat de 1985 a 2020, com processamento e classificação digital das imagens de satélite na plataforma Google Earth Engine.

Coelho-Junior et al – Unmasking the impunity of illegal deforestation in the Brazilian Amazon: a call for enforcement and accountability
Este artigo traz uma perspectiva sobre a dinâmica dos alertas de desmatamento, validados e refinados pelo MapBiomas Alerta (http://alerta.mapbiomas.org/), na Amazônia brasileira e as ações dos órgãos públicos federais e estaduais de fiscalização, destacando a urgência de reduzir e combater o desmatamento.

Santos et al – Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive
Neste estudo foi mapeada e avaliada a dinâmica espaço-temporal da qualidade das pastagens no Brasil, entre 2010 e 2018, considerando três classes de degradação: Ausente (D0), Intermediário (D1) e Grave (D2). Não houve variação na área total ocupada por pastagens no período avaliado, apesar da dinâmica espacial acentuada.

Cesar et al. – A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping
Aquicultura e salicultura são atividades econômicas relevantes na Zona Costeira brasileira (BCZ). No entanto, a discriminação automática de tais atividades de outras coberturas / usos relacionados à água não é uma tarefa fácil. Nesse sentido, as redes neurais convolucionais (CNN) têm a vantagem de prever o rótulo de classe de um determinado pixel, fornecendo como entrada uma região local (patches ou chips nomeados) em torno desse pixel. Tanto a natureza convolucional quanto a capacidade de segmentação semântica fornecem o classificador U-Net com a capacidade de acessar o “domínio de contexto” em vez de apenas pixel isolado valores. Apoiado no domínio do contexto, apresentamos os resultados das análises.

Arruda et al – An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna
Neste estudo, desenvolvemos uma abordagem alternativa para o mapeamento de áreas queimadas no bioma Cerrado no Brasil, utilizando imagens Landsat e algoritmo de Deep Learning, implementado no Google Earth Engine e na plataforma Google Cloud Storage.

Rosa et al. – Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs.
Compreender a dinâmica de perda e ganho de floresta nativa é fundamental para a conservação da biodiversidade e dos serviços ecossistêmicos, especialmente em regiões que passam por intensas transformações florestais. Quantificamos a dinâmica da cobertura florestal nativa anualmente de 1990 a 2017 na Mata Atlântica do Brasil.

Souza et al. – Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine.
Neste estudo, descrevemos uma nova abordagem e os resultados alcançados por uma rede multidisciplinar chamada MapBiomas para reconstruir o uso anual da terra e as informações de cobertura da terra entre 1985 e 2017 para o Brasil, com base em floresta aleatória aplicada ao arquivo Landsat usando o Google Earth Engine.