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The Brazilian Amazon land cover changes rapidly due to anthropogenic and

climate drivers. Deforestation and forest disturbances associated with logging and

fires, combined with extreme droughts, warmer air, and surface temperatures,

have led to high tree mortality and harmful net carbon emissions in this region.

Regional attempts to characterize land cover dynamics in this region focused

on one or two anthropogenic drivers (i.e., deforestation and forest degradation).

Land cover studies have also used a limited temporal scale (i.e., 10–15 years),

focusing mainly on global and country-scale forest change. In this study, we

propose a novel approach to characterize and measure land cover dynamics in

the Amazon biome. First, we defined 10 fundamental land cover classes: forest,

flooded forest, shrubland, natural grassland, pastureland, cropland, outcrop, bare

and impervious, wetland, and water. Second, we mapped the land cover based

on the compositional abundance of Landsat sub-pixel information that makes up

these land cover classes: green vegetation (GV), non-photosynthetic vegetation,

soil, and shade. Third, we processed all Landsat scenes with <50% cloud cover.

Then, we applied a step-wise random forest machine learning algorithm and

empirical decision rules to classify intra-annual and annual land cover classes

between 1985 and 2022. Finally, we estimated the yearly land cover changes

in forested and non-forested ecosystems and characterized the major change

drivers. In 2022, forest covered 78.6% (331.9 Mha) of the Amazon biome, with

1.4% of secondary regrowth inmore than 5 years. Total herbaceous covered 15.6%

of the area, with the majority of pastureland (13.5%) and the remaining natural

grassland. Water was the third largest land cover class with 2.4%, followed by

cropland (1.2%) and shrubland (0.4%), with 89% overall accuracy. Most of the forest

changes were driven by pasture and cropland conversion, and there are signs that

climate change is the primary driver of the loss of aquatic ecosystems. Existing

carbon emission models disregard the types of land cover changes presented in

the studies. The twenty first century requires a more encompassing and integrated

approach tomonitoring anthropogenic and climate changes in the Amazon biome

for better mitigation, adaptation, and conservation policies.
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1 Introduction

The primary interface with the atmosphere is the land cover, composed of
plants, topsoil, rock, water layers, and built-up infrastructure. It is also where
people and a wide variety of species live. Mapping and monitoring land cover
dynamics are essential to characterizing biological and geophysical attributes for
hydrological and geochemical modeling of energy balance and carbon exchange with
soil and atmosphere (DeFries et al., 1999; Claussen et al., 2001; Roberts et al.,
2003; Jones, 2008; De Sousa-Neto et al., 2017). It is also essential for sustaining
biodiversity and the growing global socio-economic demands (Krausmann et al., 2013).
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While several global land cover mappings (GLCMs) exist, these
maps can rarely be directly applied to regional studies of land
cover dynamics, given their high level of uncertainty (Congalton
et al., 2014; Pendrill and Martin Persson, 2017; Galiatsatos et al.,
2020), and thematic classification infrequently satisfies regional
users (Grekousis et al., 2015). The existing GLCMs do not provide
land cover change estimates such as deforestation and vegetation
regrowth to support policy and decision-making for conservation
and planning. Anthropogenic and climatic change are the main
factors influencing the land cover dynamic in the Amazon biome
(Marengo et al., 2018), and the GLCMs do not provide adequate
accuracy and consistency to assess these factors (Nemani and
Running, 1995).

Satellite imagery is vital to mapping and characterizing land
cover dynamics. The 50-year Landsat data archive (Wulder et al.,
2022) and the new cloud computing capability, notably by Earth
Engine (Gorelick et al., 2017), have driven the proliferation of
medium spatial resolution (i.e., 30m pixel size) land cover maps
at global, continental, and regional scales. The most common
approach to mapping land cover using Earth Engine is based on
the pixel spectral characterization of the land attributes from the
spectral bands and spectral and textural indices with machine
learning classification algorithms, mainly random forest, according
to a systematic literature review (Pérez-Cutillas et al., 2023). Object-
based classification has also brought attention to remote sensing
mapmakers (Ma et al., 2017).With the novelty of cloud computing,
time-series analysis (Friedl et al., 2022), and deep learning (Brown
et al., 2022), image classification algorithms for handling large data
sets are emerging. The MapBiomas initiative focuses on mapping
at the biome scale to deal with their intrinsic biophysical and
climatological characteristics. MapBiomas uses annual synthetic
spectral bands and indices to obtain less cloudy (i.e., < 5.0%)
Landsat mosaics to map annual land cover and land use (Souza
et al., 2020), an approach replicated in several countries.

Several studies have also demonstrated that the compositional
information within the Landsat pixel is valuable in characterizing
land cover classes (Roberts et al., 1993; Adams et al., 1995;
Asner, 2009). The pixel composition can be estimated from the
multispectral bands of Landsat sensors in terms of the abundance
of green vegetation (GV), non-photosynthetic vegetation (NPV),
soil, and shade, which make up the land cover classes in the
Amazon biome (Souza et al., 2005). For example, grasslands
are composed of a mixture of GV, NPV, and soil uniquely
different from dense forests (with high shade and GV and no
soil) (Asner and Heidebrecht, 2002). Sub-pixel information is
also essential to detect and characterize disturbances leading to
ecosystem degradation (Veraverbeke and Hook, 2013; Salih et al.,
2017). Therefore, pixel compositional information can potentially
separate ambiguous land cover classes (e.g., pasture, bare soil,
rock, and impervious surface), improving land cover mapping and
characterizing ongoing climate change in land cover interactions
(Song et al., 2018).

Most studies in the Amazon biome have focused on
deforestation and drivers of forest degradation to characterize land
cover dynamics (e.g., Souza et al., 2013; Bullock et al., 2020b;
Potapov et al., 2020) or cover a few Landsat scenes and a short
temporal scale (Roberts et al., 2002). Another essential demand is

using land cover maps to estimate changes, such as deforestation,
vegetation regrowth (Nunes et al., 2020), and water dynamics
(Souza et al., 2019), directly from the land cover map series.

The objectives of this study are 4-fold: i) improve the detection
and mapping of the main land cover classes of the Amazon
biome using Landsat sub-pixel compositional information; (ii)
characterize the annual land cover change in forest, non-forested
vegetation, and aquatic ecosystems; (iii) assess how the land cover
change drivers varied between 1985 and 2022; and (iv) estimate
annual loss and gain among the land cover types during this
period. This study is organized as follows: Section 2 presents the
methods applied to process the Landsat time series to map and
characterize land change. Section 3 presents the results, focusing
on the annual land cover change and land change drivers. Then,
we discuss the mapping uncertainty and summarize the findings of
future research steps.

2 Methods

2.1 Study area and landsat coverage

The Amazon is the world’s largest tropical rainforest, spanning
the borders of eight South American nations. Its environmental
functions are crucial for preserving the equilibrium of the world’s
climate, its vast biodiversity, and the homeplace of the original
Amazonian people. Our study area, the Brazilian Amazon Biome
(Figure 1), comprises more than 421 million hectares, or 50% of
the Pan-Amazon extension. The Amazon biome occupies 49.5% of
the nation compared to Brazilian land.

We selected all Landsat images from Collection 1 Tier 1 in the
Google Earth Engine (Gorelick et al., 2017) catalog with <50%
cloud cover. More than 86k Landsat scenes were used to build the
Amazon annual mapping between 1985 and 2022. We assessed the
number of Landsat scenes available per year and identified three
distinct periods of imagery availability (Figure 2). The first was
from 1985 to 1998 when the Landsat 5 TM sensor was the only
operational. In that period, we found almost 15k available images,
with an average of 1,070 per year. The second period was between
1999 and 2011, when Landsat 5 and 7 operated simultaneously,
duplicating the total number of scenes compared with the previous
period. In the second period, we selected 34k Landsat images (an
average of 2,638 per year). In 2012, we observed a drop in image
availability because Landsat 5 stopped acquiring data, with only
Landsat 7 operational, reducing the number of scenes to 1,753
images this year.

The last period of Landsat scene availability was between
2013 and 2021. We had Landsat 7, 8, and 9 available in this
period, raising the number of images per year relative to the
previous periods, reaching an average of 3,358 Landsat scenes per
year. For 2021, we used the Landsat 9 Collection 2 Tier 1 (n =

67 scenes) because Collection 1 data was unavailable. Including
Landsat Collection 2 in the Landsat time series does not affect
the annual classification results because the scenes are processed
individually. In 2022, we reached almost 5k Landsat scenes
(Figure 2), which may inaugurate a new period of image availability
for Landsat 9.
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FIGURE 1

Brazilian Amazon and Landsat scenes of Collection 1 during 1985 and 2022 with <50% of cloud cover.

FIGURE 2

Number of Landsat scenes in Collection 1 Tier 1 per year processed during 1985 and 2022.

We also assessed how the number of Landsat scenes varies
across the study area (Figures 1, 2). The southern region showed
400–600 Landsat scenes over the entire period (i.e., 1985–2021;

Figure 1), whereas the northern Atlantic region had fewer scenes
available (<100). The central area had approximately 300 scenes,
and the western and central northern areas had approximately 200.
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The number of scenesmay affect the classification results, which are
further investigated in this study.

2.2 Land cover classes

Defining a classification scheme remains challenging for remote
sensing of terrestrial land cover mapping (Yang et al., 2017). Land
use is related to how people interact with land surface types (i.e.,
classes). In contrast, land cover relates to the properties (biophysical
and chemical) of the Earth’s surface (Lambin et al., 2001). We
selected the most relevant land cover classes in our mapping
efforts to measure change in the Brazilian Amazon, including
forest, flooded forest, shrubland, natural grassland, pastureland,
cropland, outcrop, bareland and impervious, wetland, and water
(Table 1). We decided to include pastureland and cropland, which
are associated with land use, because their extent is significant in the
Brazilian Amazon, and both have distinct spectral, compositional,
and phenological characteristics from natural grassland and are the
main drivers of change in the region. Detailed descriptions of the
land cover classes are presented in Table 1.

2.3 Image processing

Our approach to mapping and characterizing land cover
dynamics in the Brazilian Amazon Biome with Landsat time
series follows five steps: (i) data preprocessing; (ii) spectral
mixture analysis (SMA); (iii) land cover classification; (iv) post-
classification; and (v) accuracy assessment (Figure 3). We present
below the detailed methodology for each of these steps.

i) Data preprocessing
We used Landsat Collection 1 Tier preprocessed and

ready for analysis (Dwyer et al., 2018), which fulfills standard
geometric and radiometric quality criteria, supporting
consistent time series applications (Qiu et al., 2018). Detailed
information about Landsat scene selection and availability is
presented in Section 2.1. Once the scenes were selected, the
next step was to apply cloud and shadow masks. We used
the Temporal Dark Outlier Mask (TDOM) algorithm and
the Band Quality Assessment (BQA) band available in the
Landsat Collection for that purpose, presented in detail in the
code script (Supplemental material 1).

We also used annual Landsat cloud-free mosaics, obtained
by applying a median reducer to all scenes selected every year
from 1985 to 2022, as inputs to classify outcrops, bareland, and
impervious classes. The Landsat quality assessment (QA) band
was used to remove the shadow and cloud from each Landsat
scene used to build the annual mosaics. Furthermore, we
calculated the median value of the stacked bands for each year,
removing the remaining cloud and shade not filtered by the
QA band. We also used ancillary data to assist in mapping the
outcrop class. The Global 30 meters height above the nearest
drainage (HAND) (Rennó et al., 2008) dataset was used for
that, combined with the sub-pixel compositional information
generated with spectral mixture analysis (see Section 2.5.1 for

more detail). HAND offers a worldwide depiction of elevation
relative to the closest drainage point at a resolution of 30
meters, which helps detect regions with steep slopes and ridges
associated with outcrops. The SRTM data are also an input to
map the outcrop class.

ii) Spectral mixture analysis
We estimated the pure spectral composition’s sub-

pixel proportion (or fraction), named endmember of green
vegetation (GV), soil, non-photosynthetic vegetation (NPV),
and cloud in each pixel using a generic SMA model (Souza
et al., 2005). The SMA assumes that the reflectance of each
pixel in each band of the Landsat image can be modeled as a
linear combination of the fraction image Fi of the endmember
components and its additional residual:

ρb =

n∑

i

Fi∗ρb,i + εb (1)

where ρb is a reflectance of the nth mixed, in band b, i is
the reflectance of the pure component i, in band b, Fi the
fraction (or proportion) of the endmember component i, and
εb the residual error of each band. The fractional values of the
endmember in the pixel i sum up to one (i.e., 100%) so that,

n∑

i

Fi = 1 (2)

The SMA is solved to estimate the unknown fraction
values Fi of each endmember component within the
Landsat image pixel, thus obtaining sub-pixel proportions
of vegetation, NPV, soil, and cloud. The shade fraction is
obtained as a complement of the sum of all fractions for each
pixel. In this case, the shade endmember is set to zero (i.e.,
photometric shade) in all Landsat bands. The endmember
values used in this study have been published elsewhere
(Souza et al., 2005). Fractional information of each was
also used to calculate additional SMA indices, including the
normalized difference fraction index (NDFI) (Souza et al.,
2005) and the canopy shade factor index (CSFI), a novel
fractional index presented in this study. These sub-pixel
compositional fractional and derived indices had been used
in time series analysis (Bullock et al., 2020a), and in this
study, we used them to classify the land cover classes targeted
in this study. Detailed information to calculate the SMA
fractions and indices using Google Earth Engine is presented
in Supplementary material 1.

iii) Land cover classification
The land cover classification steps included: (i) defining

the reference dataset to train, calibrate, and test the map
results; (ii) applying data augmentation to train and calibrate
RF models for each Landsat scene; (iii) building the RF
classification model and applying it to each Landsat scene
to generate annual land cover maps; (iv) applying post-
classification algorithms to remove classification errors and
artifacts; and (v) assessing the map accuracy.

We used the point reference data generated by the
MapBiomas Project (Parente et al., 2021; Sales et al., 2021),
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TABLE 1 Land cover classes mapped and used in the change detection analysis.

Land cover class
(value)

Color Color code Description

Forest (1) #006400 Vegetation types with a predominance of tree species with high-density continuous
canopy. It also includes mangrove and secondary regrowth and planted forests

Flooded forest (2) #76a5af Forest areas permanent or temporarily flooded

Shrubland (3) #00ff00 Vegetation types with a tree layer varying in density distributed over a continuous
shrub-herbaceous layer

Natural grassland (4) #b8af4f Herbaceous vegetation including patches with a well-developed shrub-herbaceous stratum

Pastureland (5) #ffd966 Areas of natural or planted forest converted to farming activity

Cropland (6) #e974ed Areas are predominantly occupied by annual crops and some regions with perennial crops

Outcrop (7) #ff8C00 Naturally exposed rocks in the terrestrial surface without soil cover often with the partial
presence of rock vegetation and high slope

Bareland and impervious (8) #ea9999 Impervious surface areas or exposed soil non-mapped in other classes

Wetland (9) #45c2a5 Shrubland and nature grassland permanent or temporarily covered by water

Water (10) #0000ff Rivers, lakes, dams, reservoirs, and other water bodies

which contains tens of thousands of sample pixels. The
reference dataset was built annually from 1985 to 2021
with colocated land cover classifications over Brazil. Sample
pixels were randomly selected using topography and land
change proportion strata. Several trained interpreters carefully
assigned land cover and land use classes to Landsat pixels
through visual interpretation, spectral information from
Landsat and Modis, and higher spatial resolution imagery
(when available). The reference dataset classification was
harmonized with the classification legend of this study
(Table 1). We used all 35,000 pixels that fell inside the
borders of the Amazon Biome and split them into training
and calibration (10k samples; 29%) and test datasets (25k
samples; 71%).

Because our land cover classification approach is applied
to all Landsat scenes, we had to implement a data
augmentation technique to get enough samples per class
to train and calibrate the RF algorithm. First, we segment
the Landsat scene using the simple non-iterative clustering
(SNIC) algorithm, using six Landsat bands (red, green, blue,
NIR, SWIR-1, and SWIR-2). Then, we overlay the point
reference data sample with the segmented Landsat scene
matching the year. The image segments with more than
one land cover class were excluded, leaving only segments
with a single class. We assessed the level of class purity
within the image segment using existing land cover maps
(i.e., MapBiomas Collection 7). Finally, we generate random
samples within the selected image segment (i.e., polygon
region) and assign the same thematic classification to the
reference data sample used to select the image segment. This
process guarantees enough samples for the RF training and
calibration for the majority of the thematic classes (Table 1).
This approachwas applied in the+86k Landsat scenes selected
for the Amazon biome through the time series.

We used the random forest (RF) classifier available in
Google Earth Engine (Gorelick et al., 2017) using as input data
the SMA sub-pixel fractional information, which included:

green vegetation (GV) soil, non-photosynthetic vegetation
(NPV), cloud, shade, NDFI, and CSFI. This selection was
based on the feature importance analysis, which pointed out
that the fraction bands were in the top 10 list of the most
important features to classify the Landsat scenes together with
the NIR and SWIR bands. The number of input features
selected was the default value for this parameter (i.e., mtree,

which is given by the square root of the number of features as
defined for each biome). The RF algorithm was set to run 50
to 100 iterations, which allows for the lowest calibration error.

The land cover classes wetland, outcrop, bareland, and
impervious did not have enough reference sample data
(i.e., classified pixels) for training and calibrating the RF
classifier. To overcome that, we classified these classes
independently and integrated them into the post-classification
step (Figure 3). Wetlands can be found in three land cover
types: forest, shrubland, and natural grassland (Table 1). These
classes can be permanently or sporadically flooded. We
randomly selected stratified samples using the MapBiomas
Surface Water dataset to train and calibrate the RF model
to classify wetland (Supplementary material 2). Then, we
used SRTM, HAND, and SMA fractions as inputs to the
RF to classify wetland. We combined the wetland binary
map with the forest class to obtain the flooded forest (i.e.,
overlapping with wetland). The areas where shrubland and
natural grassland overlapped with wetland were reclassified to
the latter class.

Outcrop has a unique spectro-temporal behavior,
with a stable compositional trend of soil, NPV, and
GV. We empirically defined the outcrop compositional
trend and used empirical rules to detect and map this
class. Additionally, we included information about
altitude, steep slopes, and geomorphological features
such as escarpments and the top of hills using SRTM and
HAND. Then, we selected stratified samples (with outcrop
and no outcrop) to train and calibrate an RF model to
map outcrop.
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FIGURE 3

Image processing steps and algorithms applied to map land cover dynamics in the Brazilian Amazon biome at the Landsat sub-pixel level.

Similarly, we identified the compositional trend of
bareland and impervious surfaces using SMA fraction
images and derived indices. We used the dynamic world
(Brown et al., 2022) dataset available in the Google Earth
Engine to randomly select stratified samples for the classes
impervious/bareland and others. Then, RF was used to
generate annual binary maps of impervious/bareland to
update the annual land cover maps. Detailed information
on how these classes were mapped can be found in
Supplementary material 3.

iv) Post-classification
In this step, we generated the final annual land cover and

land cover change maps using the Landsat scenes classified
individually. For each year, we calculated intra-annual map
metrics to measure classification stability, class changes, and
classification errors, as proposed by Pontius et al. (2017).

Then, we trained and calibrated RF with the samples used to
classify each Landsat scene to generate the annual land cover
maps (Figure 4). More details about the annual classification
are provided in Supplementary material 1.

Finally, we applied spatial and temporal filters to generate
the final annual land cover map collection, which we used
to measure land cover change (Figure 3). The spatial filter
uses a majority-neighborhood logic to replace single pixels
or a group of pixels. The mode of the neighborhood classes
replaces areas smaller than 1 hectare. This approach helps to
eliminate undesirable transitions deriving from classification.
The temporal filter is a set of rules for non-allowed transitions
applied to each image classified in a given year. For example,
it was possible to remove clouds and correct non-allowed
transitions. A total of 50 temporal rules, distributed in 3
groups, were used: (a) rules for cases not observed in the first
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FIGURE 4

Example of the intra-annual land cover classification for a subset (256 × 256 pixels) of the Landsat 227/062, in the Santarém-PA region; (A) the

Landsat scenes processed for 2022 (n = 28); (B) the classification metrics used in the RF post-classification; and (C) the annual land cover

classification. The cropland extent was larger in the more recent images; the area increased in the mode metric; however, crop occurrence is

concentrated in small areas along the year. The reference training and calibration samples showed a higher concentration of pastureland in this area,

making the RF model classify most of the areas in this land cover class.

year; (b) rules for cases not observed in the final year; and
(c) rules for examples of implausible transitions or those not
observed for intermediate years (Supplementary material 5).

v) Map accuracy
We evaluated the mapping accuracy and area estimation

using the good practices protocol (Olofsson et al., 2014)
based on 25,000 independent test samples obtained with
reference data splitting (Figure 3). Then, we estimated each
class’s overall accuracy and the user’s and producer’s accuracy
with 95% confidence. We then assessed each year’s map
accuracy using the reference samples. Because not all samples
could be utilized annually due to data cloud coverage or
the inability to classify a sample pixel, the sample size
varied annually.

3 Results

3.1 Land cover change between 1985 and
2022

The Landsat annual map time series generated in this study
allowed us to assess land cover change and the dynamics of
the Brazilian Amazon biome. We present first the changes that
happened between the initial date (1985) of the Landsat time
series analyzed and the end date (2022) (Figure 5). In 1985, the
Amazon Biome comprised 97% of natural land cover classes (forest,
shrubland, natural grassland, and water). We expect some level of
anthropic disturbance in the natural land cover during this period.
For example, forests are affected by logging, fire, and fragmentation;
fires in shrubland and natural grassland and damming water bodies
affected these land cover classes by 1985. Pasture covered only 2.9%

(i.e., 12.10 Mha) of the biome with a tiny relative area of cropland
(400 thousand ha) (Table 2).

Astonishingly, over the 37 years of our Landsat time series
analysis, we found extensive land cover change, affecting primarily
the forest class. The most extensive land cover change was the
conversion of forest to pastureland. We estimated that 46.6 Mha
(11% of the forest in 1985) of forests were lost over the 37 years
analyzed, which represents an average loss of 1.254 Mha/year
(Table 2). Pastureland increased by 44.7 Mha (10.6% increase
relative to 1985), whichmeans that forest conversion to pastureland
dominates in the Amazon (95.7%). The comparison of the initial
and end maps of the land cover time series also shows that forest
loss no longer concentrates in the so-called arc of deforestation
region, which is in the southern fringe between the Amazonia and
Cerrado biomes, going up north along the eastern border. In 2022,
we found three new hot spots of forest loss: in the midlands of Pará,
along the BR-163 road connecting Santarém-PA to Cuiabá-MT, and
in the southern Amazonas (Figure 5).

3.2 Land cover trend analysis

This section explores the yearly land cover change over the
entire time series between 1985 and 2022. We investigated the
trend (Figure 6) and breaking points (Figure 7) in the time series
that reveal major shifts in change among the land cover classes.
We applied the Loess function to the annual land cover maps to
estimate the changing trend (Figure 6).

The forest class steadily decreased between 1985 and 2022,
from 362.0 Mha to 315.6 Mha, which reduced the forest cover
in the Brazilian Amazon biome approximately to 75% (Table 2).
When inspecting the annual forest cover change, we observed four

Frontiers in Forests andGlobal Change 07 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1294552
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Souza et al. 10.3389/�gc.2023.1294552

FIGURE 5

Amazon biome land cover in 1985 and 2022. The main change was pastureland replacing forest and cropland expansion along the southern Mato

Grosso border with the Cerrado biome.

TABLE 2 Summary statistics for land cover change in the Amazon biome between 1985 and 2022.

LULC Classes 1985 2022 Area change

Area (Mha) Area (%) Area (Mha) Area (%) Mha (%)

Foresta 362.00 85.80 315.60 74.80 −46.40 −11.00

Flooded forestb 18.40 4.30 16.30 3.80 −2.10 −0.50

Shrubland 0.15 0.30 0.16 0.37 0.01 0.07

Natural grassland 9.40 2.20 8.80 2.10 −0.60 −0.10

Pastureland 12.10 2.90 56.80 13.50 44.70 10.60

Cropland 0.04 0.00 5.20 1.20 5.16 1.20

Outcrop 0.40 0.10 0.40 0.10 0.00 0.00

Bareland and impervious 0.04 0.01 0.30 0.07 0.26 0.06

Wetland 7.50 1.80 6.60 1.60 −0.90 −0.20

Water 10.00 2.36 9.90 2.35 −0.10 −0.01

aForest loss includes old-growth forest and secondary growth. bThe area change is associated with water loss.

temporal breaking points associated with forest loss (Figure 7). The
first breaking point period, between 1985 and 2004, showed the
fasted rate of deforestation (1.62 Mha/year). The second period
entered the deforestation control phase between 2004 and 2012,
when forest loss reached a low annual rate in 2012, with an average
annual rate of 0.94 Mha/year. The year 2013 marked the start
of a new period of increasing deforestation that will extend until
2022, the end of our time series analysis. We also found that
some years showed forest gain due to secondary regrowth [not

captured in Brazil’s official forest monitoring system (Valeriano
et al., 2012)]. From 2013 to 2022, the average forest loss was 1.04
Mha/year (Figure 6). Natural grassland and shrubland land cover
classes showed a monotonous temporal trend, with some years
of decrease in extent, possibly associated with droughts and fires
(i.e., in 2000 and 2010). We identified two possible decadal change
cycles, marked in 2004, in these land cover classes, which deserve
further in-depth analysis with climate and other variables (not the
subject of this study).
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FIGURE 6

Land cover area yearly trend during 1985 and 2022 detected by the Landsat time series at the sub-pixel level. The red line is the Loess function time

series trend.

The land cover classes associated with water land cover classes
(i.e., water, wetlands, and flooded forests) showed a decreasing
trend in annual extent (Figure 6). Surface water started reducing
in 1998, with several years below the average annual change,
notoriously 2004–2005, 2010, 2016, and 2020, possibly associated
with extreme droughts (Marengo et al., 2023) (Figures 6, 7). The
annual change in the flooded forest class showed a similar temporal
trend as in water. However, wetlands exhibited a steeper loss after
2010, a hallmark year of consecutive dry years in the Amazon
region (Parrens et al., 2023). As expected, the outcrop class showed
no significant change over the 37-year-time series due to its long-
term geologic stability. Our outcrop mapping approach minimized
the vegetation phenological changes expected in the land cover class
because we used dry season imagery mosaics to map it.

The annual time series trend analysis also revealed temporal
breaking points associated with pastureland, cropland, and
bareland and impervious land cover classes (Figures 6, 7). A
detailed inspection of the annual area change behavior showed
three temporal patterns of pastureland expansion (Figure 7).
First, between 1985 and 2000, the pastureland area expanded
to 22.66 Mha at an annual average rate of 1.51 Mha/year;
then decelerated to 0.99 Mha/year between 2000 and 2013, and
slightly increased until 2022 at 1.0 Mha/year. Cropland expansion
was marginal between 1985 and 1996 at an annual average of
2,550 ha/year (Figure 6). Cropland annual area changes exhibited
three distinct temporal rate patterns (Figure 7). The trend Loess
function revealed that 1996 was the temporal breaking point for
cropland faster expansion in the Amazon Biome, with two periods:

1996–2008 and 2008–2022. In the first period, the cropland annual
average expansion rate was 158,500/year, and in the second one,
233,000 ha/year (Figures 6, 7).

Bareland and impervious are a mixed land cover class,
including urban areas and infrastructure (roads and large mining
infrastructure) for the impervious surfaces, and abandoned
pastures with unvegetated topsoil (i.e., bareland), also found in
most rural towns. We also found three breaking point periods for
this land cover class: 1985–2000, with an expansion of 21,682 ha
at a rate of 1,457 ha/year; 2000–2013, expanding almost 95,000 ha
(at 7,271 ha/year); and 2013–2022 gaining 143,929 ha (at 15,992
ha/year) (Figures 6, 7).

3.3 Land cover change drivers

We used the annual land cover trend analysis presented above
to estimate the annual area change in each mapped class and to
define temporal breaking points that indicated how fast or slow the
changes happened. In the section, we used the breaking points to
understand the land cover class transitions in forest and aquatic
ecosystems (Figure 8).

The annual land cover change analysis identified three key
breaking points along the 1985–2022 time series associated with
forest loss: 1998, 2004, and 2013. These breaking points are
temporal markers of deforestation, mainly due to pastureland
expansion (Figure 8A). We also detected, to a smaller extent,
pastureland-to-cropland conversion and pasture abandonment
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FIGURE 7

Annual area change and the Loess trend line, with uncertainty interval, during 1985 and 2022 for the land cover classes of the Amazon Biome.

(followed by potentially secondary growth). We also estimated that
2 million hectares of pastures were abandoned and potentially
entered into secondary vegetation growth, and that 27 thousand
hectares were shifted to cropland (Figure 8A). Forest directly
converted to cropland was more than four times larger (i.e.,
127 thousand hectares) relative to pastureland conversion to this
class. A tiny area (600 hectares) of cropland was abandoned and
followed secondary growth. Interestingly, 28.7 thousand hectares
of cropland returned to pastureland in this period (6.2% more than
the opposite). Only 10.1 thousand hectares remained as cropland
in the following period, i.e., 35% (Figure 8A).

Between 1998 and 2004, it was also a period with very high
annual deforestation rates, with 2004 considered the second largest
annual rate of forest loss in the region, according to the official
deforestation statistics in Brazil (Valeriano et al., 2012). The annual
rate of pastureland abandonment also increased by 15% (2.3 Mha),
and pastureland converted to cropland increased almost 20-fold
(532 thousand hectares) relative to the previous one, which marks
the acceleration of crop expansion in the Brazilian Amazon. We
detected approximately five times as much direct forest loss to
cropland (i.e., 536 thousand hectares) relative to the previous
period. Cropland shift to secondary forest regrowth was 1.18
thousand hectares (Figure 8A).

The 2004–2012 period was recognized as the ‘golden’ period of
deforestation control in the Brazilian Amazon (West and Fearnside,
2021). However, our analysis showed that the annual deforestation
rate in the first 3 years of this period was not different from 1985
to 1998. Lowering deforestation started after 2008 and lasted until

2012. Cropland expansion over pastureland reached 1.0 Mha, and
153 thousand hectares were the opposite. This type of land use shift
occurs in farms as a soil management practice in crop-livestock
systems (Monteiro et al., 2024). The Pastureland and Cropland
convertions to secondary growth forest were 2.4 Mha and 590
thousand hectares, respectively (Figure 8A).

The 2013–2022 period is notable for a lack of deforestation
control in the Brazilian Amazon biome (Gatti et al., 2023). Annual
forest loss rates to pastureland and cropland were 1.44 Mha/year
and 44.2 thousand hectares/year (Figure 8A). The total direct forest
to cropland conversion area summed 385 thousand hectares, and
pastureland shifted to 3.3 Mha, establishing extensible crop fields
in southern Mato Grosso (Figures 5, 8A).

The aquatic ecosystems showed two prominent temporal
breaking points: 1998 and 2010 (Figure 7). Surface water was
reduced by 10 thousand ha between 1985 and 2022, with distinct
dynamic patterns in the breaking point periods. In the 1985–
1998 period, water changed among the water-influenced land cover
classes (i.e., water, flooded forest, and wetland). We found that
3.36 thousand ha of water class changed to wetland, indicating that
surface water was reduced to the point that soil and vegetation
mixed with water (Figure 8B). The change from water to natural
grassland was 1.2 thousand ha and 0.74 thousand ha to flooded
forest, indicating surface water loss. Conversely, flooded forest and
wetland were covered by water in this period, with a total change
of 4,62 thousand ha (96% to wetland). This may indicate that
new areas were permanently flooded. Overall, ∼4.22 thousand ha
of surface water (i.e., water class) mapped in 1985 was displaced,
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FIGURE 8

Land cover class transitions in the Amazon Biome at the temporal breaking points associated with forest conversion (A) and in the water

ecosystem (B).

and new surface water was gained, extending approximately 100
thousand ha. From 1998 to 2010, the change in water to wetland
almost doubled to 6.42 thousand ha, relative to the previous period
(Figure 8B). A similar trend was observed from water to natural
grassland, with a change of 2.70 thousand ha.

We also mapped the spatial distribution of the land cover
change along the temporal breaking points (Figure 9). The forest-
to-pastureland conversion concentrates on the arc of deforestation
between 1985 and 2004, along the fringe of the Amazon biome
with the Cerrado and Caatinga biomes in the southern and eastern
borders, respectively. After that, pastureland replaced forest, mostly
toward the core of the Amazon (Figure 9A). Cropland expansion
was concentrated in the southern Mato Grosso states, with less
extent in the eastern Amazon. Secondary growth vegetation

occurred along the regions where pastureland is concentrated, with
more concentration in the northeast of the Amazon biome. The
water loss occurred along the Amazon River margins in its estuary
on the Marajó-PA Island (Figure 9D). The varzea region on the
northern Amazon border with Roraima also showed large areas
of water loss, as did the southern border of the Amazon biome
with Pantanal and in the Eastern Amazon. Water gains are mostly
associated with damming for hydroelectric power, with less extent
flooding in Marajó-PA Island in the estuary of the Amazon River.

The quantification, characterization, andmapping of land cover
change indicated that pastureland expansion is the major change
driver in the Amazon biome, followed by cropland expansion, and
that water losses, especially after the 2010 severe drought followed
by more frequent similar events (Marengo et al., 2018), suggest
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FIGURE 9

Land cover change mapping in the temporal breaking points.

that climate change is a newer driver affecting water ecosystems in
the region.

4 Land cover mapping uncertainty

We estimated annually the mapping accuracy between 1985
and 2021 (there was no reference data for 2022) using the
independent reference test sampled (25k). The mean overall

accuracy during these years was 89% ± 0.0023. In this study,
we present the users’ accuracy per class, which is more
meaningful because it measures how each land cover class mapped
agrees with the reference data (Stehman and Czaplewski, 1998)
(Supplementary material 5 presents all accuracy metrics per year).

The forest class had the largest users’ accuracy, ranging from 94
to 95%, and the largest test samples along the time series (18,657,
sd= 1,061; 74.6%). Pastureland had the second largest test samples
(2,796, SD = 827), and its users’ accuracy ranged from 57 to 86%.
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The user’s accuracy of pastureland increased over time, reaching
71% in 1995 and above 80% in 1999. Cropland (186 samples, SD
= 175) had users’ accuracy below 50% until 2004, but after that, it
ranged between 51 and 68% (mean= 62%). Natural grassland (756
samples, SD = 42) exhibited users’ accuracy of 54–58% between
1986 and 2012, increasing to 63–70% after 2013; and shrubland
(299 samples, SD= 17) had the lowest one (mean= 11%).

For the aquatic land cover classes, water had the best users’
accuracy, ranging from 89 to 93% (mean = 91%, 373 samples);
wetland (232 samples, SD= 8) was 49–64% (mean= 57%). Flooded
forest (373 samples, SD = 8) had users’ accuracy below 50%
along the annual mapping time series (mean of 44%). It was not
possible to estimate the users’ accuracy for bareland, impervious,
and outcrop because these classes had <50 test samples per year.

The reference sample we chose for this study was designed to
train a different land cover classification scheme. We harmonized
the reference samples to the Amazonia biome, which is further
integrated into the final MapBiomas mapping product. The
reference test sample estimated the overall accuracy with a margin
of error of 5%. It is crucial to highlight that the sample size
for reference data in several classes is small, as described above,
requiring another sampling design, even though we decided to
present the area error estimate using good practices (Olofsson et al.,
2014) (Figure 10).

Comparing the land cover area estimates with pixel counting
and areas adjusted using the accuracy error matrix (Figure 10)
reveals that our mapping efforts to reconstruct the 37-time series
presented in this study can identify the major land change drivers
in the Amazon biome. The forest class showed similar annual
area estimates using these two approaches, with pixel counting
accounting for 1.5% less area on average. Our mapping approach
underestimates the area of Pastureland by 14% (SD = 8%), with
more difference between pixel counting and area adjusted in 1985–
1994 (26%), reducing to 10.5% in 1995–2018, and converging
(2.7%) in the last 3 years of the time series (2019–2022). Pixel
counting overestimated the cropland area along the time series
relative to the area adjusted, except for 1985 and 1986, but showed
a similar area expansion until 2012 (27% larger on average in
1987–2012). After 2013, these area estimates showed different
trends, with the area-adjusted estimate below 400 thousand ha
(Figure 10).

Our mapping approach also underestimated the area of flooded
forest by 28% on average (SD = 4%) and the wetland class by 42%
(SD = 3%). Natural grassland was under-mapped on average by
5% until 2011, increasing to 17% after 2012. Shrubland was over-
mapped with pixel counting along the entire time series at 13% (SD
= 6%) but within the confidence interval (CI= 95%) in most of the
years. Even though we estimated that the area adjusted to bareland,
impervious, and outcrop, the results must be disregarded due to
the limited number of samples needed to estimate the mapping
accuracy (Figure 10).

The lowmapping accuracy of the classes above did not affect the
land cover change analysis because most of the changes occurred
within the most predominant classes, and these classes showed
higher accuracy (i.e., forest, pastureland, cropland, and water).
Additionally, the area estimates of these main land cover classes
showed similar results using pixel counting, and the area was

adjusted with the accuracy metrics according to “Good Practices”
(Olofsson et al., 2014), allowing us to infer the land cover change
drivers in the Amazon Biome (presented in Section 3.4). The
remaining cloud and shade after applying the TDOM algorithm
did not affect the land cover mapping results because the SMA
model handled them. However, we could not assess possible
remaining atmospheric contamination (e.g., haze) in the Collection
1 Tier preprocessed Landsat data and its impact on the mapping
uncertainty because we processed more than 86k Landsat scenes,
and assessing individual scenes was unfeasible.

5 Deforestation estimation

Given the high accuracy of mapping the forest class (93–
94%), we designed a methodology to estimate annual deforestation
directly from the land cover time series. We also applied a
methodology to map the annual extent of secondary growth based
on themethodology proposed by Nunes et al. (2020).We combined
the annual forest losses and gains to estimate the annual forest
balance and the annual deforestation of old-growth forests and
secondary forests ≥ 5 years old (Supplementary material 6).

The total deforestation estimate in the Amazon biome was
52.7 Mha between 1985 and 2022 (Figure 11), and the total forest
loss in this period was 46.4 Mha, less than the total deforestation
because the forest class includes secondary forests. Subtracting the
secondary growth forest (> 5 years old, because 1–5 years old is
considered fallow land) gain of 5.7 Mha in 2022, we get 47 Mha
of forest loss in 2022, meaning that the Amazon Biome lost 52.7
Mha over the 37 years analyzed, and 5.7 Mha is under secondary
vegetation growth. The annual deforestation method used masked
out forest loss annually, and to unmask it, we had to apply another
method (Nunes et al., 2020) (Supplementary material 6). Therefore,
we present the annual deforestation of old-growth forests and
secondary vegetation (> 5 years old).

We compared the annual deforestation rate for old-growth
forests with other sources (Supplementary material 6, Figure 2).
Our total deforestation estimate was 9.3% greater than the
Prodes deforestation estimate (48.2 Mha) for the Amazon region
from 1988 to 2022 (period overlapped with Prodes; Figure 2,
Supplementary Material 6). We observed more annual differences
in our estimate with the Prodes one between 1991 and 2000 and less
difference between 2000 and 2012. After 2012, our deforestation
estimate was 18.9% larger than Prodes. We attribute the overall
differences to the spatial resolution of ourmaps (i.e., 30m sub-pixel)
compared to Prodes, which used 6.5 ha. Our mapping approach
used all useful Landsat (>50% of cloud cover) scenes, whereas
Prodes uses only one scene per year.

Another innovation brought by our land cover change analysis
was to estimate the deforestation of secondary growth forests
(Figure 11b). The tree loss cover product (Hansen et al., 2013),
which considers both old-growth and secondary forests in the
deforestation estimation analysis, does not separate these two
deforestation classes. The annual deforestation from the tree
loss cover product showed similar results to our estimates
until 2013, increasing over most of the year until 2021. The
deforestation in secondary forests > 5 years old adds up to
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FIGURE 10

Pixel counting and area adjustment for the land cover classes mapped. The area adjustment for 2022 was not presented because the reference data

were not available.
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FIGURE 11

Spatial distribution of annual deforestation between 1986 and 2022 (A) and annual deforestation rate of old-growth forest and secondary vegetation

> 5 years old (B).

7 Mha between 1992 and 2022. It is important to highlight
that secondary forest deforestation happens in areas previously
deforested. When considering the total deforestation (i.e., in old-
growth and secondary forests > 5 years old), the area of forest loss
increases to 63.7 Mha from 1985 to 2022.

6 Conclusion

In this study, we presented the land cover dynamics of the
Brazilian Amazon biome between 1985 and 2022 and the associated
mapping uncertainties. The novelty of our mapping approach was
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to process more than 86 thousand Landsat scenes to extract sub-
pixel compositional information as input to machine learning and
empirical rules to map the 10 most significant land cover classes
in the biome. The annual land cover maps revealed that forest loss
is mainly associated with pastureland for cattle ranching, followed
by cropland expansion. It was also possible to derive annual
deforestation and secondary growth vegetation maps and statistics,
with estimates compatible with Brazil’s official deforestation and
global deforestation products. We also characterized non-forested
ecosystems, including shrubland and natural grassland classes, and
assessed their anthropogenic change. It was also possible to identify
water loss in aquatic ecosystems, which may be associated with
extreme and frequent droughts, extended summer seasons, and
higher temperatures. Future steps for our research will focus on the
measure of forest disturbances related to forest degradation drivers,
which include selective logging, fires, and forest fragmentation,
based on this study’s land cover mapping efforts. The 37-year
improved spatial-temporal characterization of land cover change
and drivers in the Amazon, revealed in this study, offers crucial
details about the threats to the Amazon biome and how human
intervention and, possibly, climate change have changed the region.
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