
 

 
 
 

Pasture Appendix 
 

Collection 10 

 

Version 2 

 
General coordinator 

Laerte Guimarães Ferreira Jr.  

Technical coordinator 

Vinicius Vieira Mesquita 

Ana Paula Matos 

 

Team 

Ana Paula Carlos Assunção 

Lana Mara 

Leandro Parente 

Lucas Tales Da Silva 

Luís Bauman 

Mariana Gomes 

Nathalia Teles 

Pâmela Camila Assis  

Tharles Andrade 

Wilton Ladeira da SilvA 

 

 

 

 



 

SUMÁRIO 

 

1. Overview 
2. Landsat image mosaics 

2.1. Definition of the temporal period 
2.2. Image selection 
2.3 Time-series normalization 

3. Classification 
​ 3.1. Classification scheme 
​ ​ 3.1.1. Geographical and temporal stratification 
​ ​ 3.1.2. Only geographical stratification for Landsat 8 time-series 
​ 3.2. Feature space 
​ 3.3. Classification algorithm, training samples and parameters 

​ ​ 3.3.1. Collection 3 
​ ​ 3.3.2. Collection 4 
​ ​ 3.3.3. Collection 5 

​ ​ 3.3.4. Collection 6 
​ ​ 3.3.5. Collection 7 
​ ​ 3.3.6. Collection 8 
​ ​ 3.3.7. Collection 9 
​ ​ 3.3.8. Collection 10 
4. Post-classification 

4.1. Spatial-temporal filter (3x3x5) 
5. Validation strategies 
6. Data Analysis 

6.1. Comparison between Collections 3 and 4 
6.2. Comparison between Collection 3 and 5 
6.3. Comparison between Collection 5 and 6 
6.4. Comparison between Collection 7 and 8 
6.5. Comparison between Collection 8 and 9 
6.6. Comparison between Collection 9 and 10 

7. Pasture maps integration 
8. Pasture Quality Mapping 

8.1 Collection 5 



 

8.2 Collection 6 
8.3 Collections 7, 8 and 9 
8.4 Collection 10 

9. Pasture Dry Biomass Productivity mapping approach 
9.1 Collection 9 
9.2 Collection 10 

10. References 

 



 

1. Overview 

 
In the context of the information produced by MapBiomas, there are maps that 

describe the dynamics of land occupation by pasturelands in the last 40 years (Collection 
10). This information is crucial for a better understanding of the complex processes related 
to changes in land use and land cover in Brazil, especially those related to the gain and loss 
of biodiversity and productivity.  

Specifically, the MapBiomas pasture mapping has been based on the approach 
described in Parente et al. (2017) using the Landsat satellite series and the supervised 
classifier Random Forest with different feature space and sampling techniques (figure 1). 
Every collection had improvements that helped to increase the overall accuracy and to reduce 
the confusions between pastures and other land-cover and land-use types (e.g. native 
vegetation, agricultural crops).  

 
 

Figure 1. Pasture mapping workflow regarding the MapBiomas Collection 10. 

2. Landsat image mosaics 

The pasture mapping was produced with Landsat data Collection 2 Tier 1 (from 1985 
to 2025) (Markham & Helder, 2012). Landsat 5 images were used in the first half of the time 
series (i.e. 1985 to 1999). The images acquired by Landsat 7 were considered only for 2000, 
2001, 2002 and in 2012 (due to the failure of the Scan Line Corrector mechanism - Markham 
et al., 2004). For the time periods from 2003 until 2011 and from 2013 to 2021 we used, 
respectively, Landsat 5 and Landsat 8 images. These time series were normalized to 
Top-of-Atmosphere (TOA) reflectances and screened with the Landsat Quality Assessment 
Band (QA = 2720 for Landsat 8 and QA = 672 for Landsat 5/7) in order to remove pixels 
contaminated with clouds and cloud shadows (ROY et al., 2014).  



 

2.1. Definition of the temporal period 

Our mapping approach considered as a classification unit the useful limits of the 
Landsat scenes (according to the Worldwide Reference System - WRS-2 Path/Row without 
the overlapping zones) and a 24-month time window, for the entire country, ensuring the 
prevalence of observations of a specific year (e.g. the feature space of 1994 considered 
images of the second semester of 1993 and the first semester of 1995) (figure 2). This time 
window provides a denser time series for the generation of the feature space, which is 
capable to capture, in a more adequate way, the vegetative vigor variations of pastures, 
since these areas are very susceptible to climatic variations (Ferreira et al., 2013). 

 

 
 
Figure 2. Number of good observations (without clouds and cloud shadows) available for the 
Landsat scene 223/071, considering 12 months (i.e. without year overlap) and 24 months 
(i.e. the 1994 image considered observations of the second half of 1993 and the first half of 
1995). 

2.2. Image selection 

For all the "pasture" Collections generated until now, the composited Landsat images 
(bands and indices) utilized in the classification process were selected only for the wet 
season. The operationalization of this approach, a challenge for a country with continental 
dimensions as Brazil, occurs automatically, on a pixel basis, through a percentile analysis of 
all NDVI values for the assumed time window. Specifically, only observations with values 
greater than the NDVI 25th percentile are considered to compose the wet season, in a 
24-month window. For Collection 5 onwards, the NDVI 25th percentile values were further 
categorized according to four other percentiles, i.e. 10, 25, 75, and 90%. Therefore, four 
additional radiometric bands were incorporated to the classification process concerning 
Collections 5, 6, and 7. 

 
 
 
2.3 Time-series normalization 
 

The time-series normalization aims to increase the temporal consistency of the 
spectral data obtained by different sensors, allowing to expand the quantity of recurrent 



 

observations obtained for the same region. Specifically for the Landsat time-series, this 
technique enables the use of spectral samples obtained by different sensors (i.e. TM, ETM+, 
OLI) in the same training process utilized by the machine learning algorithms (Chavez & 
Mackinnon,1994; Roy et al., 2016). 

In this direction, we tentatively implemented in Collection 4, a relative calibration 
method (Furby & Campbell, 2001) between the data obtained by the ETM+ and OLI sensors, 
which produced a Landsat 7 pixel value corrected for Landsat 8, considering all images 
obtained between 2013 and 2017 (figure 3). The Landsat 7 images were aligned with the 
Landsat 8 images, assuming that the eight days difference between the acquisition of the 
two images does not significantly impact the normalization process. For each WRS Landsat 
in Brazil, and for each spectral band, a regression was trained using the SVM algorithm and 
the same sample points used in the classification algorithm (see section 3.3). Only samples 
without land use and land cover change, between 2013 and 2017, were considered in the 
regression. The entire process was implemented on Google Earth Engine 
(https://code.earthengine.google.com/5c09817f5926b2efca0506bfb8c465fc) and resulted in 
1,900 regressions (i.e. 381 WRS Landsat and 5 spectral bands). The regressions were 
applied in their respective scenes and spectral bands in all Landsat 5 and 7 images used in 
Collection 4 obtained between 1985 and 2012. Although there are differences between TM 
and ETM+ sensors, we used the same regression for both sensors based on their spectral 
similarity. 
 

https://code.earthengine.google.com/5c09817f5926b2efca0506bfb8c465fc


 

 
Figure 3. Color composition comparison between Landsat 8 and Landsat 7 images, before 
and after normalization (such normalization attempt was implemented only in Collection 4). 

3. Classification 

The classification approach considers a set of metrics that encompass the spectral 
variations, along a time window, to capture the seasonal characteristics of one or more land 
use and land cover classes (WANG et al., 2015; Pasquarella et al., 2018). These metrics are 
used to create a feature space, which is classified via the Random Forest algorithm 
(Breiman, 2001) calibrated with 31,449 training points (visually inspected and randomly 
distributed throughout the Brazilian territory). This section presents the progress regarding 
our pasture mapping approaches, whose rationale are thoroughly discussed in the following 
papers: Parente et al., 2017, Parente & Ferreira, 2018, e Parente et al., 2019. 

3.1. Classification scheme 

Stratified classification approaches allow machine learning algorithms to be trained to 
capture geographic and temporal aspects specific to one, or more, land use and land cover 
classes. However, its correct application depends on the existence of training samples for 



 

each stratum. Multitemporal classifications, for example, need samples that represent each 
defined period in time (e.g. years). On the other hand, it is possible to use a single model to 
classify the entire time series, once that time-series data were normalized. 

3.1.1. Geographical and temporal stratification 

Our classification scheme considers a geographical and temporal stratification, in 
which all the 381 Landsat scenes necessary to encompass the entire Brazilian territory are 
individually trained and classified, on an annual basis, since 1985. Considering that pastures 
areas are very susceptible to climatic inter-annual variations (Ferreira et al., 2013) and 
present different biophysical and management characteristics throughout Brazil (Aguiar et 
al., 2017; Ferreira et al., 2013b), this approach allows the classification models to better 
perform regarding the identification of the pasture class. However, to minimize the impact of 
geographical stratification, part of the training samples is shared across different 
classification models. In practice, 900 points are used to train a specific model for one 
scene, with a total of 800 points recovered from the immediately adjacent scenes. 

3.1.2. Only geographical stratification for Landsat 8 time-series 

The classification approach for the years after 2017 (i.e. regarding Collections 4, 5, 6, 
and 7) utilizes samples from five years, considering only the monitoring period of Landsat 8 
and assuming that the trained classifier is able to handle the spectral interannual variations 
of the earth's surface. This approach eliminates the need for new training samples every 
year and allows greater variability in the samples, as it contains higher seasonality 
conditions. Other aspects of the classification approach \ in 2021, the 2018, 2019, and 2020 
images were classified based on samples from 2016, 2017, 2018, 2019, 2020. For the 
Collection 7 (released in August, 2020) the same idea was applied to the 2021 images.  

Specifically for Collection 8, an entire revision over the 31 thousand training samples, 
from 1985 to 2022, was conducted, and another 19 thousand new training samples included. 
In addition, 4.296 new training samples were added as intervention points to specific 
situations where the classifier was performing poorly to map pasturelands or mapping 
non-pasture areas wrongly. Also, for Collection 9, the year 2023 was included and the last 3 
years (2020 - 2022) were reviewed to keep the consistency of the land cover classes. 

Collection 10 provides 10,000 new training samples acquired through random 
stratified sampling across five Mosaic of Uses classes (detailed in Chapter 3.3.8.), along with 
an additional 419 intervention training samples in rocky outcrop and grasslands within the 
Cerrado and Amazon biomes. 

 

3.2. Feature space 

On the Landsat images filtered with the BQA (Band Quality Assessment band) and 
selected according to the established time window (section 2.1. Definition of the temporal 
period), five operations are applied (i.e. mean, standard deviation, minimum, maximum, 
amplitude and percentiles) over six spectral bands (i.e. green, red, near-infrared, shortwave 
infrared 1 and shortwave infrared 2) and three spectral indices (i.e. Normalized Difference 
Vegetation Index - NDVI, Normalized Difference Water Index - NDWI; Gao, 1996, and the 
Cellulose Absorption Index - CAI; Nagler et al., 2003). The Landsat temperature band is not 



 

included as a covariate in our classification scheme due to the occurrence of saturated 
pixels over several dates and regions of the country. Beginning with Collection 5, we added 
information (Elevation and Slope) derived from the SRTM Digital Elevation Model (DEM) and 
geographic coordinates. In total, our pasture mapping for Collections 3 and 4 used 40 
spectral-temporal bands and, for Collections 5, 6, 7, 8 and 9, 72 spectral-temporal bands 
and four spatial metrics (table 1). For Collection 10, latitude and longitude features were 
removed due to an observed anomaly at the country's edges, where these features caused a 
decrease in pasture classification probabilities and gradient variations in the probabilities in 
vertical or horizontal directions. 

 
Table 1. Feature space utilized for the pasture classification in Collections 3 to 9, 
considering 72 spectral-temporal and four spatial metrics.  
 

# Bands / indexes Operation "Season" Collection 

1 Green Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

2 Green 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

3 Green Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

4 Green Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

5 Green Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

6 Green Percentile 10% WET 5, 6, 7, 8, 9 and 10 

7 Green Percentile 25% WET 5, 6, 7, 8, 9 and 10 

8 Green Percentile 75% WET 5, 6, 7, 8, 9 and 10 

9 Green Percentile 90% WET 5, 6, 7, 8, 9 and 10 

10 Red Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

11 Red 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

12 Red Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

13 Red Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

14 Red Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

15 Red Percentile 10% WET 5, 6, 7, 8, 9 and 10 

16 Red Percentile 25% WET 5, 6, 7, 8, 9 and 10 

17 Red Percentile 75% WET 5, 6, 7, 8, 9 and 10 

18 Red Percentile 90% WET 5, 6, 7, 8, 9 and 10 

19 NIR Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

20 NIR 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

21 NIR Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

22 NIR Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

23 NIR Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

24 NIR Percentile 10% WET 5, 6, 7, 8, 9 and 10 



 

25 NIR Percentile 25% WET 5, 6, 7, 8, 9 and 10 

26 NIR Percentile 75% WET 5, 6, 7, 8, 9 and 10 

27 NIR Percentile 90% WET 5, 6, 7, 8, 9 and 10 

28 SWIR1 Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

29 SWIR1 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

30 SWIR1 Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

31 SWIR1 Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

32 SWIR1 Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

33 SWIR1 Percentile 10% WET 5, 6, 7, 8, 9 and 10 

34 SWIR1 Percentile 25% WET 5, 6, 7, 8, 9 and 10 

35 SWIR1 Percentile 75% WET 5, 6, 7, 8, 9 and 10 

36 SWIR1 Percentile 90% WET 5, 6, 7, 8, 9 and 10 

37 SWIR2 Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

38 SWIR2 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

39 SWIR2 Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

40 SWIR2 Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

41 SWIR2 Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

42 SWIR2 Percentile 10% WET 5, 6, 7, 8, 9 and 10 

43 SWIR2 Percentile 25% WET 5, 6, 7, 8, 9 and 10 

44 SWIR2 Percentile 75% WET 5, 6, 7, 8, 9 and 10 

45 SWIR2 Percentile 90% WET 5, 6, 7, 8, 9 and 10 

46 NDVI Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

47 NDVI 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

48 NDVI Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

49 NDVI Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

50 NDVI Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

51 NDVI Percentile 10% WET 5, 6, 7, 8, 9 and 10 

52 NDVI Percentile 25% WET 5, 6, 7, 8, 9 and 10 

53 NDVI Percentile 75% WET 5, 6, 7, 8, 9 and 10 

54 NDVI Percentile 90% WET 5, 6, 7, 8, 9 and 10 

55 NDWI (Gao, 1996) Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

56 NDWI (Gao, 1996) 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

57 NDWI (Gao, 1996) Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

58 NDWI (Gao, 1996) Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 



 

59 NDWI (Gao, 1996) Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

60 NDWI (Gao, 1996) Percentile 10% WET 5, 6, 7, 8, 9 and 10 

61 NDWI (Gao, 1996) Percentile 25% WET 5, 6, 7, 8, 9 and 10 

62 NDWI (Gao, 1996) Percentile 75% WET 5, 6, 7, 8, 9 and 10 

63 NDWI (Gao, 1996) Percentile 90% WET 5, 6, 7, 8, 9 and 10 

64 CAI (Nagler et al., 2003) Mean WET 3, 4, 5, 6, 7, 8, 9 and 10 

65 CAI (Nagler et al., 2003) 
Standard 
Deviation WET 3, 4, 5, 6, 7, 8, 9 and 10 

66 CAI (Nagler et al., 2003) Minimum WET 3, 4, 5, 6, 7, 8, 9 and 10 

67 CAI (Nagler et al., 2003) Maximum WET 3, 4, 5, 6, 7, 8, 9 and 10 

68 CAI (Nagler et al., 2003) Amplitude WET 3, 4, 5, 6, 7, 8, 9 and 10 

69 CAI (Nagler et al., 2003) Percentile 10% WET 5, 6, 7, 8, 9 and 10 

70 CAI (Nagler et al., 2003) Percentile 25% WET 5, 6, 7, 8, 9 and 10 

71 CAI (Nagler et al., 2003) Percentile 75% WET 5, 6, 7, 8, 9 and 10 

72 CAI (Nagler et al., 2003) Percentile 90% WET 5, 6, 7, 8, 9 and 10 

73 SRTM (Farr et al., 2007) Elevation - 5, 6, 7, 8, 9 and 10 

74 SRTM (Farr et al., 2007) Slope - 5, 6, 7, 8, 9 and 10 

75 Geographic Coordinate Latitude - 5, 6, 7, 8 and 9 

76 Geographic Coordinate Longitude - 5, 6, 7, 8 and 9 

 

3.3. Classification algorithm, training samples and parameters 
The mapping approach used in Collections 3 and 4 considered the same feature 

space, training samples and machine learning algorithm (i.e. Random Forest), modifying 
only the stratification strategy and sample balancing in the classification process. For 
Collection 5 onward, we use a similar approach as in Collection 4, with the difference being 
only the increment of new metrics in the feature space (table 1) and training samples (see 
sections 1., 3.3.6 and 3.3.8). 

3.3.1. Collection 3 

The collection 3 classification approach uses the Random Forest algorithm (Breiman, 
2001), which demands training samples. Considering the absence of reference data, 
spatially explicit, for the entire mapping period, we decided to produce a training dataset with 
31,449 points, randomly distributed over Brazil (figure 4), ensuring 100 points for each 
Landsat scene. Nevertheless, in the border scenes, with the ocean and neighboring 
countries, this amount was weighted by the respective Brazilian territory area of the scene. 
The sampling design used the pasture map of 2015 (Parente et al., 2017) to reflect the 
actual pasture area proportion, scene by scene, in the training dataset. However, for scenes 



 

with a proportion of less than 10%, a minimum amount of 10 points was randomly selected 
over the pasture areas. 

 All training samples were visually inspected by three trained interpreters, who 
analyzed, for each point, two Landsat images per year, regarding the dry and wet periods, 
classifying, for 33 years, each transition according to 10 land cover and land use classes 
(i.e. pasture, crop agriculture, planted forest, native vegetation, mixed use, water bodies, 
urban area, mining, and others). This assessment was conducted using the Temporal Visual 
Inspection Tool (Nogueira et al., 2017; Parente et al., 2021), which also considers the 
respective MOD13Q1 NDVI time series and high-resolution Google Earth images (figure 5). 
The Random Forest used 500 statistical decision trees to associate a per pixel pasture 
probability. For example, a pixel with a pasture probability of 60% had 300 trees indicating 
the pasture class and 200 trees the non-pasture class. 

 

 
Figure 4. Training samples with the consolidated classes, assigned by the visual inspection, 
between 1985 and 2017 (Collection 3). Each one of the 31,449 points was inspected by 
three interpreters1 2. 

 
 
 

2 For Collection 8 this point collection was updated with an addition of 18,550 randomly stratified 
points and 4,664 intervention points, comprising now the period from 1985 to 2022 and a total amount 
of 54,663 samples. 

1 For Collection 6 (and 7) this point collection was updated, comprising now the period from 1985 to 
2020. 



 

 
Figure 5. Temporal Visual Inspection tool (TVI) allows users to visualize two Landsat 
images, regarding the dry and wet seasons, as well as a MOD13Q1 NDVI time series. This 
image is located in Luís Eduardo Magalhães - BA. 
 



 

3.3.2. Collection 4 

​ Collection 4 used only the geographical stratification approach (see section 3.1.2), 
considering a different sample balancing from Collection 3. In this direction, a single 
classifier was trained using 15,000 samples distributed from 1985 to 2017, considering 
balanced samples (i.e. 50% pasture and 50% not-pasture). Not-pasture samples were 
organized locally and globally. Local samples were obtained using the logic of neighboring 
scenes, according to Collection 3 (see section 3.1.1.), considering all available years and the 
crop agriculture, planted forest, and native vegetation classes. The global samples were 
obtained considering the entire Brazilian territory and were shared among all trained 
classifiers, considering all available years and the classes of water bodies, urban areas and 
sand banks, which have similar spectral characteristics throughout the surface. For pasture 
samples only local samples were used and for Random Forest the parameters of Collection 
3 were maintained (see section 3.3.1). 
 

3.3.3. Collection 5 

Aiming to reduce the computational cost and the commission errors observed in 
Collection 4, Collection 5 used the same stratification approach as Collection 3 from 1985 to 
2017 (see section 3.1.1) and the geographical and temporal approach (see section 3.1.2) 
from 2018. The main difference between Collections 5 and 3 is the increment of new 
spectral-temporal metrics derived from the percentiles 10%, 25%, 75% and 90% 
(considering only values above the “original” 25 percentile), which proved to be very helpful 
to distinct land use types (Zalles et al., 2019), once it aggregates information regarding the 
intra annual spectral behavior. Likewise, spatial metrics like elevation and slope, derived by 
the Digital Elevation Model (DEM) produced by the Shuttle Radar Topography Mission - 
SRTM (Farr et al., 2007), and geographic coordinates, have been added to improve the 
spatial learning capacity of the classifier. The metrics were chosen based on the results of 
multiple classifier performance tests that shows an improvement in the classifier accuracies 
scene by scene (figure 6) compared to the same test with Collection 3 metrics. This test was 
performed in R language (R Core Team, 2020) with the randomForest classifier package 
(Liaw and Wiener, 2002) and the K-Fold Cross-Validation algorithm from Caret package 
(Kuhn ,2008; Caret, 2020). This test also used the same samples, metrics and parameters 
used in the pasture mapping via Google Earth Engine.  

 



 

 
Figure 6. Comparison between the classifier accuracies (scene by scene) reached by the 
metrics of Collections 3 and 5. The improvements in the classifier performance and capacity 
to map pasture using the metrics utilized in Collection 5 was significant when compared with 
Collection 3. 
 

The codes used to produce Collection 5 and next collections are available at 
MapBiomas Github repository. 

 

https://github.com/mapbiomas-brazil/pasture


 

3.3.4. Collection 6 

The production of this collection was focused on ensuring the continuity of training 
and validation samples for the pasture mapping from 2018 to 2020, while considering the 
same mapping approach adopted in Collection 5. The samples were inspected by two 
experts using a strategy TVI-like based on the GIS software QGIS with the Earth Engine 
Package (see 3.3. Classification algorithm, training samples and parameters) for the years 
2018 to 2020.  

 

3.3.5. Collection 7 

Two distinct mapping approaches were considered in the production of Collection 7. 
First, a similar one (named 7B) to that adopted in Collection 6, thus ensuring, in a 
straightforward manner, the pasture mapping continuity from 1985 to 2021. In parallel, a 
more sophisticated strategy (named 7A), considering additional context information, was 
evaluated. Specifically, in the approach 7A the classification algorithm was calibrated based 
on the set of covariates associated with both a given training point, as well as to the eight 
surrounding pixels (figure 7)3. 

 
 

 
 

Figure 7. Use of context information evaluated in Collection 7. 
 
Given that the "surrounding" approach led to reduced pasture areas, particularly within 

the Cerrado and Caatinga biomes after 2016, we opted for the more conventional "7B" approach 
for the operational production of Collection 7 pasture maps. Until a more comprehensive 
evaluation can be conducted to determine the potential impacts, regarding both commission and 
omission errors that might arise due to the increased set of covariates from neighboring pixels, 
we decided not to use the approach "7A".  

 

3 The codes used to produce Collection "7A" (evaluation version) are available at 
MapBiomas Github repository. 
 

https://github.com/mapbiomas-brazil/pasture


 

3.3.6. Collection 8 

For Collection 8, the entire set of training samples (~31 thousand samples) used to 
do the pasture mapping was reviewed from 1985 to 2022 and another set of 19 thousand 
new samples was inspected for the same period (Figure 8). The assumption here was that 
increasing the amount of training samples improves the classifier performance, by increasing 
the representativeness of pasture and non-pasture variability. Also, for specific cases, 
intervention training samples were added focusing on solving local mistakes or confusion of 
the classifier. 

 
 

 
 

Figure 8. Training samples used in the Pasture Mapping on Collection 8. 
 

3.3.7. Collection 9 

During processing of pasture maps of collection 9, tests were performed using cubic 
Savitzky-Golay filters with 3x3x3 (3x3 pixels and 3 years) and 5x5x5 (5x5 pixels and 5 years) 
windows. These filters were applied to the map series in order to obtain substantial 
improvements over the multidimensional median filter (3x3x5) used in the past collections. 
However, no significant improvements or changes were observed between the results and 
the Savitzky-Golay filter results showed a tendency to increase the commission of cropland 
area. 



 

3.3.8. Collection 10 

In Collection 10, a sampling experiment was conducted in which 10,000 points were 
randomly drawn in a stratified manner over pure Mosaic of Uses (MU) pixels (pixels adjacent 
exclusively to their own class) from Collection 9 and the World Reference System (WRS) of 
Landsat imagery, commonly called scenes or orbit/point. The stratification methodology was 
based on the frequency at which a pixel was mapped as MU during the series, thus creating 
the following strata: 1 - 1 to 9 years; 2 - 10 to 19 years; 3 - 20 to 29 years; 4 - 30 or more 
years; and 5 - a grouping of strata that presented less than 10,000 pixels per region. From 
the interpretation and classification of the points, performed by image interpreters, a detailed 
temporal analysis revealed that, on average, only 31% of the sampled points fall into the 
"Pasture" class, which suggests a higher level of confusion about the MU class than 
expected. For example, in 2023, it was found that 42.8% of the sampled points correspond 
solely to natural vegetation classes, contradicting the pre-existing association of the MU 
class only with the areas of Agriculture (21%) and Pasture (28.4%). 

These 10,000 points were added as additional training samples for the pasture 
mapping to increase the detection of pasture areas, missed in MU, and improve the 
discrimination of them from other types of land use and cover (Figure 9). Results show a 
reduction in the total area mapped as pasture, caused mainly by the elimination of area 
commissions related to native vegetation and agriculture. Furthermore, additional 419 
intervention training samples were collected in rocky outcrop and grassland areas which 
were reported as wrongly mapped as pasture in Cerrado and Amazonia. 

 

Figure 9. Additional training samples used in the Pasture Mapping on Collection 10. 

https://flourish-user-preview.com/api/canva/embed/visualisation/23162919/SveXEk0zRrpVTq7GgcyrTS-ypcOEipXpm-2xnQFWLAATu3mlQIOk2n1wSGeXQQGv/


 

4. Post-classification 

As all maps are produced year by year and independently, a post-classification 
approach is used to increase the temporal and spatial consistency of the final result. 

 
4.1. Spatial-temporal filter (3x3x5) 

All the classified scenes are retrieved from Google Drive and merged, on a yearly 
basis, thus producing a time series of probability pasture maps (see 3.3. Classification 
algorithm, training samples and parameters). To improve these results, we apply a 
space-time filter, capable of minimizing abrupt, and sometimes unreal, transitions, 
simultaneously using information from these two dimensions. The filter, implemented through 
the SciPy library (Scipy, 2018), uses a 5-year time window and 3 x 3 pixels to replace the 
central kernel value with the median of 45 probability values (figure 10). Upon this result, a 
threshold of 51% is applied as a minimal acceptable value to confirm the pixel’s classification 
to produce the pasture maps for Brazil. 

 

 
 
Figure 10. The kernel, with 3x3 pixels and 5 years, is used in the space-time filtering of the 
probability pasture maps produced with Random Forest. The central pixel, highlighted in red, 
is replaced by the median of the probabilities of the 45 pixels kernel. 
 

5. Validation strategies 

We perform an independent quality assessment considering 5,000 validation points 
(figure 11), as well as 1,225 points collected in the field by multiple institutions and initiatives 
(figure 12). The validation sampling design also considered a pasture map of 2015 (Parente 
et al., 2017), so that the number of random points could be balanced per class (i.e. 2,500 for 
the "pasture" class and 2,500 for the "not-pasture"), conservatively assuming the minimum 
mapping accuracy is 50% and the error of accuracy assessment is 1% within a 95% 
confidence interval (Lohr, 2009). 
 



 

 
Figure 11. Validation samples with the consolidated classes, assigned through visual 
inspection, in the years of 1985 and 2020. Each of the 5,000 points was inspected by five 
interpreters. 

 
 
 

 
Figure 12. Field data, equivalent to 1,225 points, collected by LAPIG/UFG, Embrapa, TNC, 
Aliança da Terra, Rally da Pecuária, Associação de Plantas do Nordeste (APNE), 



 

Universidade Estadual de Feira de Santana (UEFS), Universidade Federal do Rio Grande 
do Sul (UFRGS), and WWF, between 2014 and 2018. 
 

The validation samples were inspected by five interpreters, but only points with 
agreement of four or more votes were considered in the accuracy assessment (i.e. at least 
four interpreters identified the same land cover and land use class), resulting in (at least) 
4,100 samples available for each year. For all the pasture maps, the global, producer and 
user accuracies were assessed with a balanced confusion matrix, which removes sampling 
bias (Pontius & Millones, 2011). 
 ​ The pasture maps present an overall accuracy of ~91%, an user accuracy of ~95% 
(from 2000 on), and a producer accuracy varying between 60% and 72%, indicating a 
prevalence of omission errors in all years (figure 13). With the gradual decrease of omission 
errors in recent years, this assessment reveals that the most accurate, and recent, pasture 
map is for the year 2015. In Collections 3 and 4, the decay of producer accuracy in the years 
2016 and 2017 can be explained by the lack of information, after 2017, for the space-time 
filter. For the decay observed in Collection 5, the possible cause is inherited information from 
maps of 2018 and 2019 (generated using the approach described in section “3.1.2”, and 
without the time series normalization).  

The evaluation using field data, obtained between 2013 and 2018, was performed 
only with the 2015 pasture map, which mapped 984 of 1225 pasture field points in Collection 
3, 1048 in Collection 4 and 988 in Collection 5, corresponding to accuracies of 80.32%, 
83.50% and 80,65%, respectively. This accuracy rate, greater than the producer's accuracy 
performed with validation samples, can be explained by the spatial distribution of the field 
samples, collected in pasture areas more consolidated and relevant to livestock. It is 
important to mention that the higher producer accuracy observed for Collection 4, compared 
to the other collections, had an increase in the commission errors. 

 

 
 
Figure 13. Accuracy assessment results for all the years (and Collections), calculated based 
on the validation samples, only considering points with four or more votes (i.e. at least four 
interpreters identified the same land cover and land use class). 



 

 

6. Data Analysis 

One of the motivations for producing a new map collection every year is to generate 
more spatially and temporally accurate maps for every version. Occasionally, we need to 
take a step back in an approach to ensure a more realistic map. For Collection 5 (as well as 
for Collections 6 and 7), we chose a more conservative map approach, with as little 
commission error as possible. Thus, we did not compare Collections 4 with 5, as the results 
were similar to the comparison between Collections 3 and 4. 

6.1. Comparison between Collections 3 and 4 
The main methodological difference between Collections 3 and 4 was the use of a 

single classification model for the entire time series combined with a sample balancing of 
50-50% (see section 3.3.2). Analyzing the results of the two collections we observed the 
following aspects: 

●​ The methodology of Collection 4 allowed the classification of periods without samples 
(i.e. year 2018), which allowed the use of a larger number of samples and 
consequently different sample balancing strategies; 

●​ Collection 4 filled the pasture areas better, producing a map with better spatial 
consistency (figure 13) and lower omission error (figure 12). 

●​ Collection 4 promoted a better separation of agricultural areas that were classified as 
pasture in Collection 3; 

●​ The commission error increased in Collection 4 (figure 12), mainly due to the 
erroneous classification of natural areas with large spacing between trees, especially 
in the Cerrado and Caatinga biomes; 

●​ Collection 4 showed a sudden increase in producer accuracy, between 1997 and 
2001, probably caused by the smaller number of available observations between 
1985 and 2000 (Figures 14 and 15). 

 

 
Figure 13. Examples of pasture areas for the year of 2017, for the municipality of 
Óbidos/Pará, as depicted by Collections 3 (blue) and 4 (red). 
 



 

 
Figure 14. Number of good observations (i.e. without cloud and cloud shadows, for two 
specific years, considering the same time window used in the classification approach of 
Collections 3 and 4. 
 

 
Figure 15. Average image availability per year for the entire Brazil. 
 

6.2. Comparison between Collection 3 and 5 
 

From 1985 to 2017, the approach used in Collection 5 (see section 3.1.2) differs from 
the Collection 3 only by the number of metrics used to produce the series of maps; and, from 
2018 on, the classification approach, scene by scene, used only the samples available from 
the Landsat 8 satellite (see section 3.1.2). Analyzing the results for Collections 3 and 5 we 
observed the following aspects: 

  
●​ The use of percentile metrics in Collection 5 helped to minimize commission error of 



 

planted forest and crop, because these metrics gave more information about the intra 
annual behaviors of the surface during the mapped period (24 months). The result 
was a more refined map compared to Collection 3 (figure 16); 

●​ Collection 5, when compared to Collection 3, reduced the omission errors and had 
little impact on commission errors (figures 17 and 18). In addition, the accuracy 
graphic, on a yearly basis, was slightly smoother than in Collection 3 (figure 13). 

●​ In some biomes, like Caatinga and Atlantic Forest, it was possible to observe some 
omission errors caused by seasonality interference, high landscape fragmentation 
and insufficient training samples. 

​  

 
Figure 16. Mapping examples of pasture areas, for the municipality of Brasilândia/Mato 
Grosso do Sul, in Collections 3 (yellow) and 5 (cyan). In some cases, Collection 3 
misclassified planted forest as pasture (since after the cut, grass can grow over these 
areas). 
 

 
Figure 17. Mapping examples of pasture areas near Mapinguari National Park (Porto 
Velho/Rondônia), in Collections 3 and 5. This example shows a better pasture area (piquet) 
filling by Collection 5. 
 



 

 
Figure 18. Differences in accuracies between Collections 5 and 3. The inclusion of new 
metrics helped to increase the correctly mapped pasture area over the series of maps 
without impacting the commission error.  

6.3. Comparison between Collection 5 and 6 
The modifications and updates made in Collection 6 significantly improved the 

differentiation between pasture areas and crop plantations, while increasing the sensibility to 
detect natural riparian forests inside the pasture paddocks, mainly in the Cerrado, Amazon, 
and Atlantic Forest biomes. The map consistency improved due to the updating of training 
samples and caused a reduction in the total pasture area mapped in the final maps of the 
series (figure 19), which was expected to happen. 



 

 
Figure 19. Improvements in Collection 6 compared to Collection 5. The updates in the 
training sample series enable a better differentiation between pasture and crop plantation. 
Also, the sample update slightly enhanced the edges between pasture and riparian forests. 
 

6.4. Comparison between Collection 7 and 8 
The increased amount of training samples and the usage of intervention samples 

helped to substantially improve the accuracies of the maps in Collection 8 at the cost of 
increasing the commission errors by an average of 0,3% (Figure 20). This newer collection 
brings maps with a better spatial consistency which in some years reaches producers' 
positive difference close to 7% compared to Collection 7 (Figure 21). 

 



 

 
Figure 20. Accuracy assessment (on an annual basis) for Collections 7 and 8, calculated 
based on the validation samples, only considering points with four or more votes (i.e. at least 
four interpreters identified the same land cover and land use class). 
 

 
Figure 21. Percentual differences in accuracies between Collections 7 and 8. The revision 
and increment of new training samples, as well as the usage of intervention training points, 
helped to boost the accuracy values in Collection 8 (at the cost of slightly decreasing the 
user accuracy). 
 



 

6.5. Comparison between Collection 8 and 9 
No significant differences were observed between collection 8 and 9 (figure 

22), with an exception at the beginning of the time series (e.g. 1985 and 1986) where 
the producer accuracy was lower than Collection 9. Also, a subtle stability is 
observed in the Collection 9 User Accuracy values. 

 

 
Figure 22. Accuracy assessment (on an annual basis) for Collections 8 and 9, calculated 
based on the validation samples, only considering points with four or more votes (i.e. at least 
four interpreters identified the same land cover and land use class). 
 

6.6. Comparison between Collection 9 and 10 
The increment of additional training samples in Collection 10, specific in noisy 

regions, caused a slight improvement in the user accuracy (~0,37%) and worsened 
the producer (~-2,41%) and global (-0,64%) accuracy (Figures 23 and 24). This 
behavior was possibly caused by the existence of many validation samples between 
the edges of uses and covers, which are gray zones in terms of land use and land 
cover classification. For future collections, an updating and revision of pasture 
validation samples will be conducted in a way to minimize the problems related to 
these edge samples. 



 

 
Figure 23. Accuracy assessment (on an annual basis) for Collections 9 and 10, calculated 
based on the validation samples, only considering points with four or more votes (i.e. at least 
four interpreters identified the same land cover and land use class). 
 

 
Figure 24. Percentual differences in accuracies between Collections 9 and 10. The addition 
of ten thousand new samples based on Mosaic of Uses analysis helped to slightly increase 
the User accuracy of Col. 10, however at the price of decreasing the capacity to detect 
pasturelands. 

7. Pasture maps integration 

 
For Collection 4, the final pasture area resulted from an integration between 

Collections 3 and 4 (figure 25); i.e. the areas mapped by Collection 4 were considered only 
in regions mapped with the class Agriculture and Pasture Mosaic (i.e. class 21), according to 
the mapping approach used by the biomes, producing a map with the best aspects of both 



 

collections. Map integrations were not considered in collections posterior to Collection 4. 
​ ​

 
 
Figure 25. Integration scheme of pasture maps produced in Collection 4. 

8. Pasture Quality Mapping 

This section presents the progress regarding our pasture vigor condition mapping 
approach, once called pasture quality. 

8.1 Collection 5 

In Collection 5, the analysis approach for mapping the quality of the Brazilian 
pastures, considering the years 2010 and 2018, was based on Landsat NDVI images, which 
functions as a proxy of pasture vigor. Specifically, we followed the method proposed by Gao 
et al. (2006) with adaptations made by Andrade et al. (2013) for the Brazilian reality. 

For the two analyzed periods (i.e. 2010 to 2018), NDVI median images within a 
24-month time window were used, considering the second semester of the previous year, 
the year of interest and the first semester of the following year (e.g. July / 2009 to June / 
2011). To obtain median NDVI images for the beginning and end of the analyzed periods (i.e. 
2010 to 2018), which were comparable to each other, the following criteria were used:  

1 - Equalize the availability of images between sensors (i.e. TM and OLI), reducing 
the data to the monthly average and using only the months with information available for 
both periods (i.e. 2010 and 2018);  

2 - The negative NDVI values ​​were removed from the analysis, since in pasture 
areas these values ​​tend to be associated with noise in the data;  

3 - Landsat 5 data - beginning of the period - were spectral corrected to be 
compatible with Landsat 8 data - end of the period. The median NDVI images were obtained 
using all Landsat scenes with less than 80% cloud coverage, and applying the criteria of 
equalizing the period of the images on a pixel basis. 

For each Brazilian biome, the median NDVI images were normalized, using the 
following equation:  

 
 𝑁𝐷𝑉𝐼𝑞 = 𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 
The resultant image corresponds to a pasture condition index, with values ​​between 0 

and 1, which was stratified into four categories of pasture quality: not degraded [> 0.6], 
slightly degraded [0.5 - 0.6], moderately degraded [0.4 - 0.5], and severely degraded [<0.4]). 



 

Based on the CAR limits (i.e. Rural Environmental Information concerning property limits), 
the Pasture Degradation Index was calculated for each Brazilian property, weighting the 
pasture area in each class of degradation according to the total pasture area on the property 
(figure 26). For a thorough description of the above strategies and analysis of the results 
regarding the Collection 5 pasture quality mapping, refer to Santos et al., 2022 paper. 
 
 

 
 
Figure 26. Analysis approach for mapping the quality of the Brazilian pasturelands for 
Collection 5. 

8.2 Collection 6 

To build a consistent pasture quality time series for the entire country, it is necessary 
to have consistent and stable satellite observations, which are very difficult to obtain based 
on the regular USGS Landsat archive available via the Google Earth Engine. Thus, for 
Collection 6 we opted to use the MOD13Q1 EVI data series (2000 to 2020), which were 
processed with state-of-the-art techniques in order to extract stable (i.e. gap filled series, on 
a pixel basis, via the use of the TMWM algorithm / code) and seasonally adjusted data (i.e. 
removal of the seasonal component via the use of the STL algorithm / code). The basic 
rationale used in Collection 5 was maintained (refer to figure 23), although for each year, the 
so-called CVP (i.e. pasture vegetative cover - in portuguese) was derived from the 
normalization of the mean deseasonalized EVI value (from six bi-monthly composites, 
considering the 90th percentile) and only three quality classes were derived (figure 27). 

 

https://www.mdpi.com/2072-4292/14/4/1024
https://gitlab.com/geoharmonizer_inea/eumap/-/blob/master/docs/notebooks/01_raster_gap_filling.ipynb
https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html#statsmodels.tsa.seasonal.STL


 

 
Figure 27. Analysis approach for mapping the quality of the Brazilian pasturelands for 
Collection 7. 
 

8.3 Collections 7, 8 and 9 

For Collections 7, 8 and 9, our first attempt consisted of using harmonized Landsat 
ARD images (Analysis Ready Data) made available by the Global Land Analysis and 
Discovery (GLAD / University of Maryland), whose harmonization strategy enables the 
generation of radiometrically stable and consistent time series (Potapov et al., 2020). 
However, in view of the unsatisfactory and not fully understood results, we opted, as in 
Collection 6 (figure 28), to use MODIS MOD13Q1 images (2000 - 2023). Although the 
processing logic followed that used for Collection 6, two key modifications were 
implemented:  

1) use of monthly MODIS data (as opposed to bimonthly data);  
2) use of the 50th percentile (i.e. median) as opposed to the 90th percentile 

considered for Collection 6.  
These two modifications aimed at more consistent results, while being more 

conservative in terms of detecting inter-annual variations. 



 

 
Figure 28. Analysis approach for mapping the vigor of the Brazilian pasturelands for 
Collection 9. 

8.4 Collection 10 

Collection 10 now includes newer region normalizations, now also considering 
Brazilian states and climatic regions based on rainfall data, a feature requested by the user 
community (researchers, government, and enterprises). 

9. Pasture Dry Biomass Productivity mapping approach 

This section presents the progress regarding our brand new Pasture Dry Biomass 
Productivity mapping approach. 

9.1 Collection 9 

Following the steps of Robinson et al. (2018) and Veloso et al. (2020), the Pasture 
Dry Biomass Productivity maps are based in the uncalibrated Gross Primary Productivity 
(uGPP) produced by Global Pasture Watch (GPW) consortium (Isik et al., 2025), derived 
from a light use efficiency model similar to MODIS MOD17 products, built mainly using 
remote sensing data. The estimates of uGPP (figure 29) follows the formula recommended 
by Robinson et al. (2018), where the results are the product of the Photosynthetically active 
radiation (PAR), Absorbed fraction of PAR (fAPAR) and the land cover light use efficiency 
(LUE). 

The PAR estimates uGPP used were derived from the Synoptic Radiative Fluxes and 
Clouds (SYN1deg), which uses Clouds and the Earth's Radiant Energy System (CERES) 
data in its constitution. For the fAPAR, they consider the bi-monthly gap filled NDVI median 
derived from harmonized Landsat ARD images (Analysis Ready Data) made by the Global 
Land Analysis and Discovery (GLAD / University of Maryland), which delivers a stable and 



 

consistent time series. The uGPP data don’t consider a LUE factor for each pixel, therefore 
we adopted a standard value of 0,5 gC/m²/day/MJ, which is recommended for Brazilian 
pasturelands according to the work of Veloso et al. (2020). Even without applying a LUE 
factor (uncalibrated GPP), GPW did a LUE adjustment using a temperature and wetness 
scalar through bi-monthly MODIS MOD11 surface temperature gap filled and NDWI from 
Landsat ARD data. 

To convert the GPP information (gC/m²/day) to amount of Dry Biomass (tons of dry 
biomass/ha/year) in a pasture, a conversion factor of 0,81 was used, considering it as 
simplification of multiple unit conversions: 

●​ Light use efficiency factor for Brazilian pasturelands - multiplication by 0,5; 
●​ Conversion from Carbon to Total Dry Biomass - multiplication by 2,7 

(considering carbon as 37% of total dry biomass, according to IPCC); 
●​ grams to tons - division by 1.000.000; 
●​ square meters to hectares - multiplication by 10.000; 
●​ Bi-monthly average GPP to Annual GPP - sum of averages followed by a 

multiplication by 60 (number of days in two months) 
 

 
Figure 29. Workflow used to estimate GPP based on Robinson et al. (2018) and Veloso et 
al. (2020) approaches. 
 

9.2 Collection 10 

Based on literature references (Ma et al., 2018; Zanini et al., 2020; Sanquetta et al., 
2022), we adjusted the dry biomass conversion factor from 2.7 to 2.3 (i.e. carbon content 
representing 43% of total dry biomass), which is a more realistic value for the common 
grasses used for the Brazilian pasturelands (i.e. Brachiaria brizantha). Additionally, the 
uGPP data is now delivered annually, considering the average of six bimonthly observations 
and its accumulation along 365 days. Thus, the conversion of the annual uGPP (in grams of 
mass per square meter) to tons of total dry biomass per hectare is based on conversion 
factor 0.0115, i.e. 0,01t/ha x 2,3 x 0,5. 
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