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Document Overview

This appendix details the methods used for the Collection 10 of products from the
MapBiomas’ Agriculture module. This document is divided into the following structure:

A. Irrigation Systems
Description of the classification methods for the irrigated agriculture classes included
in the “Irrigation Systems” map.

B. Number of Cycles
Description of the methods for the “Number of Cycles” maps. Currently in its beta
version.

C. Land Use Land Cover - Second Season
Description of the methods for the Second Season map. Currently in its beta version.

Description of the classification methods for all agriculture and forest plantation classes
included in MapBiomas’ Land Use Land Cover and the “Agricultural Use” map inside the
Agriculture module can be found here.

The MapBiomas organization in GitHub has repositories for all the network's initiatives and
modules. The ‘Agriculture’ repository contains the scripts used in all products inside the
Agriculture module and is available at:

=> Agriculture: https://github.com/mapbiomas/brazil-agriculture



https://brasil.mapbiomas.org/download-dos-atbds-com-metodo-detalhado/
https://github.com/mapbiomas
https://github.com/mapbiomas/brazil-agriculture

A. Irrigation Systems

1 Overview of the classification method

The MapBiomas project produces, among other land use and land cover classes, annual
irrigation agriculture maps in Brazil from 1985 to the present. The first irrigation agriculture
map from MapBiomas was released on Collection 5, comprising from 2000 to 2019, with
maps of center pivot irrigation, covering all Brazil, and other irrigation systems, covering
only the semiarid region. In Collection 6, the irrigation rice class was added and the other
classes were extended to the 1985-2020 period. In Collection 7.1, in addition to the classes
from the previous Collections, a new type of information about irrigation was added, the
pivot dynamic. Pivot dynamics consists in presenting individualized characteristics of each
pivot, such as number of cycles per year, dates of start and end cycles, and average daily
precipitation. In the Collection 8 and Collection 9, the information about center pivot, other
irrigation systems and pivot dynamics were reviewed and the 2022 and 2023 years were
added, respectively. In Collection 10, the pivot dynamics product was discontinued in favor
of a pixel based approach to retrieve the same information, which started with the number
of cycles product in the Agriculture module. Figure 1A presents the evolution of irrigation
agriculture classes within the MapBiomas project.
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Figure 1A: Comparison between the ‘ Irrigation Agriculture’ classes of MapBiomas

Collections 5 to 10.



2 Center pivot irrigation systems

The first attempts in the MapBiomas project for mapping center pivot irrigation systems
came through the Next Generation Mapping (NexGenMap) project. The objective of this
initiative was to develop machine learning algorithms, tools and methods for producing the
most current, detailed and accurate maps of land use and land cover using daily PlanetScope
imagery, cloud computing, and new artificial intelligence algorithms. In the NextGenMap
project, artificial intelligence algorithms were developed to map center pivot irrigation
systems using PlanetScope imagery in the Cerrado biome (SARAIVA et al., 2020).

In MapBiomas context, the mapping of ‘Center pivot irrigation systems’ was performed using
Landsat imagery and an adapted U-Net architecture (RONNEBERGER et al., 2015), an image
segmentation convolutional neural network architecture. The adapted U-Net architecture
was trained with two different sets of samples, one set with center pivot irrigation systems
samples and other with irrigated rice samples. To increase the temporal and spatial
consistency of the final maps, the raw result was post-processed using temporal and spatial
filters (Figure 2A).
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Figure 2A: steps of the mapping process of two center pivot irrigation systems.
2.1 Image selection

The mapping of the center pivot irrigation systems used annual mosaics generated from
available images in each year. However, in this Collection, as was only added the 2022 year
in the temporal series from the last Collection, the images from the period of 1985 to 2021



were Landsat Collection 1 Tier 1 TOA, and for 2022 were Landsat Collection 2 Tier 1 TOA. In
addition, only images with less than 80% cloud cover and shadows were considered.

2.2 Definition of regions for classification

The reference maps used for categorizing center pivot irrigation systems were generated
through a collaboration between the Brazilian National Water Agency (ANA) and Embrapa
Milho e Sorgo, corresponding to the years 1985, 1990, 2000, 2005, 2010, 2014, and 2017
(ANA, 2019). These mappings were produced based on visual interpretation of imagery
acquired from Landsat 5, Landsat 8, and Sentinel 2A/2B satellites, alongside high-resolution
images (<1 meter) sourced from Google Earth.

For the delimitation of the study area, the Brazilian territory was divided into blocks of 0.5' x
0.5' degrees (~300 thousand ha each). Only blocks with occurrence of center pivot irrigation
systems in any of the reference map years were selected. Figure 3A shows the 723 chosen
blocks distributed across an area of approximately 212 million hectares to map center pivot
irrigation systems in Brazil.
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Figure 3A. Study area for the mapping of center pivot irrigation systems in Brazil.
2.3 Classification
2.3.1 Classification scheme

The classification scheme of the center pivot irrigation considered only two possible classes
for each pixel, center pivot irrigation, and non-center pivot irrigation.

2.3.2 Feature space



The feature space created for the center pivot irrigation systems mapping aimed to obtain
the characteristics of the pivot at the time they were cultivated, as well as to highlight the
differences in relation to the other targets, such as other agriculture areas, pasture, forest
formation, etc. Therefore, three metrics were selected that showed the best results to
distinguish the pivots in relation to the other targets:

- NDVI_p75, 75th percentile of NDVI values for all images;

- NDVI_p100, 100th percentile, or maximum value, of the NDVI values of all images,
and;

- NDVI_stdDey, the standard deviation of the NDVI values for all images.

The mosaic generated is composed by the selected metrics. Each metric corresponds to a
band in the image, as shown in Figure 4A.
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Figure 4A. RGB visualization (NDVI p75, NDVI Maximum, NDVI stdDev) of an image used for
training and mapping of the center pivot irrigation systems, generated for the year 2017.

The use of images with only three bands improved the process of training and classifying the
pivots since the reduced amount of bands, consequently reduced the computational
infrastructure necessary for the processing of this data.

2.3.3 Classification algorithm, training samples and parameters

Due to the extensive study area (~212 Mha) and computational limitations, the model was
trained using only a subset of blocks chosen from the population of 723 blocks.

The choice of sample data is an important step for training Deep Learning models, since the
samples must represent all the spatial and spectral variability of the population. For this,
stratified sampling was performed based on the pivot area obtained from the reference



maps. The sampling considered three strata: with low, medium and high coverage of center
pivot irrigation systems. The stratum containing blocks with low coverage was created from
the blocks whose pivot area was less than or equal to the median of the area of all blocks,
that is, 50% of the blocks (361 blocks). The stratum with the high coverage was created from
blocks whose sum of the area of its pivots covers about 50% of the pivot area of the entire
population (total of 41 blocks). Finally, the remaining blocks (321 blocks) were used to create
the layer with blocks containing a medium cover of center pivot irrigation systems. After
creating the stratum, 20 blocks were randomly chosen for training and 10 blocks for testing
in each of the three stratum. The training blocks were used to calibrate the model, while the
test blocks were used later for the accuracy analysis of the model. Figure 5A illustrates the
spatial distribution of the stratum and blocks chosen for training and testing the population
model.
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Figure 5A. Spatial distribution of high, medium and low center pivot irrigation cover stratum
and location of the blocks used for training and testing the model in Brazil.

As mentioned earlier, an adaptation of the U-Net convolutional neural network architecture
was performed to map the center pivot irrigation systems. Figure 6A illustrates the modified
U-Net architecture created.
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Figure 6A. Adapted U-Net architecture, with its layers and connections, used for the
mapping of center pivot irrigation systems.

This architecture was developed in Python, using the TensorFlow 2.0 library. The entire
training and mapping process was carried out using the Google Colab platform using Google
Drive to access the annual mosaics (generated in Google Earth Engine). Table 1A presents
some hyperparameters used during model training.

Table 1A. Hyperparameters for training the modified U-Net architecture.

Hyperparameter Value
Chip size 256 x 256 pixels
Batch size 20

Epochs 100
Learning rate 0.001

The 2017 reference map was used for model training. In the training blocks, chips with 256 x
256 pixels were generated, 75% were allocated to the training data set and 25% for the
validation data set. Figure 7A illustrates the process of subdividing training blocks into
smaller chips to be used as input for model training.
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Figure 7A. Examples of the training and validation chips allocated within the training block of
the model.

The training set was used to learn the model and the validation set used to perform initial
validations during model learning.

After the network training process was completed, the classifier was applied throughout the
Brazilian territory. In this step, 1024 x 1024 pixel chips were used. Increasing the size of the
chips at the time of sorting not only decreases problems generated by the edges of the chips
but also increases the memory capacity required for processing. Therefore, it was necessary
to decrease the batch size to 1.

2.4 Post-Classification
2.4.1 Temporal filter

The temporal filter employed for center pivot irrigation systems maps consisted of a
five-year moving window. Within this window, the targeted pixel was modified according to
two guiding rules:

1. the pixel is changed to center pivot if at least one of the two previous years and at
least one of the two subsequent years, that pixel was mapped as a pivot, indicating a
possible model omission error;

2. pixels that were mapped as pivots only in the assessed pixel of the five-year window,
indicating a possible inclusion error, have been removed from the classification.

2.4.2 Spatial filter

In the center pivot irrigation systems mapping it was used a spatial filter based on the
erosion operation followed by an expansion operation using a circular kernel with a radius of



60 meters. This spatial filter helped to eliminate noise generated by the mapping, as well as
smoothing the edges of the center pivot irrigation (Figure 8A).
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Figure 8A Example of correction of the spatial filter (on the right) in a classification that
presents noise on the edges (on the left).

2.5 Validation strategies

The preliminary validation of the center pivot irrigation model used the test blocks of the
2017 mapping (see Figure 5A), as these blocks were not used for the model training. From
the reference map, the user's and producer's accuracy was calculated for each of the
individual stratum and also considering all strata at the same time. Table 2A presents the
results of the preliminary model validation.

Table 2A. Preliminary validation of the center pivot irrigation mapping for the year 2017,
using the test blocks selected in each stratum.

Stratum Producer’s Accuracy User’s Accuracy
Low coverage 40.87% 71.39%
Medium coverage 86.37% 91.62%
High coverage 84.16% 96.19%
All strata 83.97% 95.38%

The preliminary accuracy analysis showed that, in 2017, the model performed better in
regions with higher center pivot coverage. Considering all strata in 2017, the model
presented an omission error of 16% and an inclusion error of 5%.



2.6 Results

Comparing the area mapping results between MapBiomas Collection 9 and the
ANA/EMBRAPA dataset reveals that until 2020, the area mapped by MapBiomas closely
aligns with the values reported in the ANA/EMBRAPA dataset. However, in the subsequent
years, emerges a more substantial discrepancy, with MapBiomas Collection 9 showing a
tendency to underestimate the actual area.

Over the temporal series, the ANA/EMBRAPA dataset indicates an initial area of
approximately 0.03 Mha in 1985. This area steadily increases, reaching its peak of 1.90 Mha
in 2020. In comparison, MapBiomas Collection 10 starts at about 0.1 Mha in 1985, and its
growth remains consistent, culminating at around 1.63 Mha in 2022 (Figure 9A). It is noted
that there is a spike in area in 2023 (1.89 Mha) and a drastic reduction in area in 2024 (1.39
Mha). Both of those anomalies are likely faults of the methodology and not actual trends,
and will be addressed in future collections.

In addition, is important to point out, that these divergences between the MapBiomas and
ANA/EMBRAPA, especially in the last years, underscores the significance of comprehending
their distinct methodologies and sources, mainly due to the omission of the smalls pivots
from MapBiomas.
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Figure 9A: Results of automatic mapping of center pivot irrigation systems in Brazil based on
Landsat images for the period from 1985 to 2024 compared to surveys carried out by the
ANA (ANA, 2022).



3 Irrigated rice

Since Collection 9, rice is mapped using Random Forest algorithm to complement the results
obtained with U-net U-Net architecture, a segmentation convolutional neural network
architecture (RONNEBERGER et al., 2015). Samples are obtained by reference maps from the
National Water Agency (ANA, 2021b) and the National Supply Company (ANA e Conab,
2020). To increase the temporal and spatial consistency of the final maps, the raw result is
also post-processed using temporal and spatial filters.

The irrigated rice class present in the Irrigation Systems map is the same as the rice class
present in MapBiomas’ Land Use Land Cover map. Details of the rice mapping methodology
can be found in the Agriculture and Forest Plantation Appendix.

4  Irrigated agriculture in semi-arid region

In Collection 9, a notable improvement in the approach employed for classifying the 'Other
irrigation systems' class is worth mentioning. The methodology maintains its foundation in
pixel-by-pixel mapping through the utilization of the Random Forest algorithm. However,
within Collection 9, a novel reference map of irrigated agriculture in the semiarid region was
acquired in collaboration with the National Water Agency (ANA). Additionally, it was also
obtained from ANA, a regular grid, demarcating regions within the semiarid region where
occurrences of irrigated crops are prevalent. These augmentations to the methodology serve
to enhance the accuracy and precision of the mapping process for the 'Other irrigation
systems' class. Figure 10A presents the flowchart of the methodology for 'Other irrigation
systems' classification
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Figure 10A. Classification process for mapping ‘Other irrigation systems’ in MapBiomas.
4.1 Image selection

In this new approach for Collection 9, the mapping process relied on the use of yearly TOA
(Top of Atmosphere) mosaics from Landsat Collection 2. These mosaics were supplemented
by a set of spectral indices and statistical measures. This combination aimed to emphasize
and distinguish between areas of irrigated agriculture and the native vegetation. By
incorporating these spectral indices and statistical measures, the methodology gains the
ability to identify and highlight the distinct features that characterize irrigated agricultural
areas within the context of the surrounding natural vegetation.

4.2 Definition of regions for classification

In the mapping of other irrigation systems, the study area was restricted to the Brazilian
semi-arid region. In this region, due to water requirements, irrigation is almost a mandatory
requirement to reduce production risks and/or increase productivity.

In the previous Collections, a total of 34 municipalities were employed as the mapping area
(selected due to their substantial expanse of irrigated agriculture). However, several of these
municipalities also hosted significant non-irrigated agricultural activity, inadvertently leading
to the inclusion of non-irrigated areas being classified as irrigated in the resulting map. The
mapping accuracy was compromised due to the overlap with non-irrigated regions.

With the adoption of the new approach in Collection 9, a substantial enhancement in
mapping accuracy has been achieved. This enhancement is attributed to the utilization of a
regular grid provided by the ANA covering the semi-arid regions with irrigated agriculture.
Each grid cell measures approximately 0.20° x 0.20° in size. This new grid-based approach
has helped to avoid the previous issue of misclassification of non-irrigated areas. Figure 11A
presents a comparison between the region adopted in the previous Collections and the new
grid-based region adopted in Collection 9 to map the 'Other Irrigation System' class. This
transition to the grid-based methodology has resulted in improved accuracy and a more
precise representation of irrigated areas.
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Figure 11A Comparison between the region adopted in the previous Collections and a new
region adopted since Collection 8 to map ‘Other Irrigation System’ class.

4.3 Classification
4.3.1 Classification scheme

The classification process for the 'Other irrigation systems' class involves the consideration
of two main groups: 'lrrigated agriculture' and 'Non-irrigated agriculture'. To enable the
mapping of this class, training samples are obtained from the reference map provided by the
ANA. These training samples cover both 'lrrigated agriculture' and 'Non-irrigated agriculture'
regions and are used as training for the Random Forest classifier. This trained classifier is
subsequently used to identify areas of irrigated agriculture within the annual Landsat
mosaics. This classification procedure is carried out exclusively within the geographical
boundaries set by the ANA's GRID, ensuring accuracy in identifying irrigated agricultural
regions.

4.3.2 Feature space

For the mapping of 'Other irrigation systems' alongside the data obtained from Landsat
program satellites, supplementary metrics and indices were also calculated to enhance the
identification of irrigated agricultural areas.

Table 3A presents the set of annual metrics used to map irrigated agriculture in the Brazilian
semi-arid region.

Table 3A. Set of metrics used to map irrigated agriculture in the Brazilian semi-arid region.



Bands and Spectral

Source indices Metrics
BLUE
GREEN
RED
NIR EVI2 Quality Mosaic
SWIR1 Minimum
Landsat SWIR2 Maximum
TIR1 Median

Standard Deviation
EVI2 (JIANG et al, 2008)

NDWI (GAO, 1996)
MNDWI (XU, 2006)

CAl (NAGLER et al, 2003)

4.4 Classification algorithm, training samples and parameters

The methodology employed for mapping irrigated agriculture within the semiarid region was
founded on the application of the Random Forest algorithm. It used annual Landsat image
mosaics, incorporating Landsat spectral bands—specifically, BLUE, GREEN, RED, NIR, SWIR1,
SWIR2, and TIR1. These spectral bands yielded valuable insights into both physical and
biological surface attributes, facilitating the accurate differentiation of distinct land cover
classes. Furthermore, statistical metrics such as Minimum, Maximum, Median, and Standard
Deviation were computed for each spectral band, along with the EVI2 Quality Mosaic. This
augmentation aimed to refine the spectral signal of the target class. Additionally, a selection
of vegetation indices, EVI2, NDWI, CAl, and MNDWI, were integrated into the analysis to
further enhance the classification process.

To initiate the process, 10,000 training samples were collected for both the 'lrrigated
agriculture' and 'Non-irrigated agriculture' classes, considering the reference map provided
by the ANA for the year 2019. These training samples were strategically acquired within the
designated grids of the irrigated agriculture region in the semiarid region, as outlined by the
ANA.



The Random Forest model was trained using these training samples and the Landsat
mosaics, with a total of 100 trees in the model. The classification procedure was exclusively
confined to grids demarcated by the ANA, aligning with their predefined geographical
boundaries. The assimilated training samples corresponded to the ANA's reference map,
guaranteeing the accurate representation of ‘lrrigated agriculture' and 'Non-irrigated
agriculture' across the region.

4.5 Post-Classification

The post-classification process of irrigation agriculture maps included the application of
temporal and spatial filters.

4.5.1 Temporal filter

In the other irrigation systems mapping, a moving five-year window was also used, but using
a different rule from the center pivot irrigation systems. In this filter, if the evaluated pixel
was in the same class as at least three other pixels (previous, ahead or both), it remains in
that class. However, if the evaluated pixel was not of the same class as at least three pixels
(previous, ahead or both), the class was changed.

4.5.2 Spatial filter

In the other irrigation systems, a spatial filter was used to remove pixels that had less than 6
other connected pixels.



4.6 Results

When evaluating the 'Other irrigation systems' class mapped by MapBiomas Collection 9 and
comparing it with ANA and IBGE data, discernible trends and disparities become evident
(Figure 12A). This examination underscores the variability in reported values among the
datasets, which may arise from differing data sources, methodologies, and assessment
scopes.

According to MapBiomas Collection 9, the temporal evolution of the 'Other irrigation
systems' class reveals fluctuating patterns across the years. The mapped area starts at
approximately 0.05 Mha in 1985, undergoes changes throughout the years, and reaches
about 0.21 Mha in 2022.

In contrast, ANA data provides information for specific years, indicating an area of 0.34 Mha
in 2015 and 0.32 Mha in 2019. Similarly, IBGE data, available for 2017, records an area of
0.26 Mha for the 'Other irrigation systems'.

While the datasets exhibit overall upward trends, the variations between reported values
reflect differences in data collection, processing, and methodologies. It is noteworthy that
the ANA and IBGE data, collected at specific intervals, whereas MapBiomas Collection 9
provides a continuous temporal perspective. These disparities emphasize the importance of
evaluation and cautious interpretation when utilizing such datasets to comprehend land use
dynamics and trends of 'Other irrigation systems' class.
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Figure 12A. Results of the 'Other irrigation systems' class in the semiarid region for the
period from 1985 to 2024 compared to surveys carried out by the Atlas da Irrigagdo (ANA,
2017, 2021a) and the Censo Agropecudrio (IBGE, 2009, 2019).

5 Center pivot irrigation information (Discontinued)

Understanding center pivots irrigation dynamics allows us to improve our understanding
about most parts of irrigated agriculture in Brazil. The first effort to understand irrigation
systems in the MapBiomas project began in Collection 5, with the use of innovative methods
of Artificial Intelligence, through convolutional artificial neural networks to perform
semantic segmentation of pivots throughout the Brazilian territory. In Collection 6 there was
an expansion of the years mapped, with generation of time span maps of the entire
MapBiomas series. In Collection 7.1 in addition to another time series expansion of center
pivot irrigation map, covering from 1985 until 2021, it was also made effort to improve our
understanding about crop dynamics in center pivot irrigation. Then, in Collection 7.1, a
methodology was developed to provide more detailed information about this system, such
as the number of cycles performed per pivot in the crop year, the dates of start and end of
each cycle, in addition to information about accumulated precipitation in each pivot and
each crop cycle, initially only for Minas Gerais state between 2015 and 2021.In Collection 8
and 9, the pivot dynamic was extent to all of Brazil, and the 2022 and 2023 years,
respectively, was also processed, providing dynamic information about the Brazilian pivots
from 2015 to 2023.

5.1 Overview of the classification method

To provide this information to each pivot, several steps are necessary, from applying a Deep
Learning model for center pivots irrigation individualization to obtaining smoothed time
curves to identify the number of annual cycles existing in each of these pivots. Figure 13A
presents all steps of this methodology.
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Figure 13A. Flowchart of the methodology necessary to obtain the number of cycles per
pivot. 1) Obtaining the training dataset for the neural network (Landsat image and Mask of
pivots); 2) Training the Deep Learning model for individualization of the pivots; 3) Landsat
time series curve smoothing; 4) Identification of peaks and valleys in the curve; 5)
Identification of the start and end dates of each cycle; and 6) Obtaining number of crop
cycles and accumulated precipitation per cycle per pivot.

5.2 Center pivot individualization
5.2.1 Image selection

To individualize each center pivot irrigation, we used annual mosaics generated from
available images for each year. Therefore, images from the Landsat series were obtained on
the Google Earth Engine platform (Collection 2 Tier 1 TOA) in the period of 2015 to 2023.
Only images with under 80% cloud cover and shadows were considered.

5.2.2 Definition of regions for classification

To individualize each center pivot irrigation, samples were first selected that represent
relevant information about the pivots, so it was decided to select the blocks that contained
at least 5 pivots. Thus, the samples were stratified between test areas (blocks with at least 5
and at most 9 pivots) and training areas (blocks with more than 10 pivots).

Figure 14A presents the blocks used for the RCNN (Region Based Convolutional Neural
Networks) Mask prediction for all Brazil. The Mask R-CNN is a Convolutional Neural Network
(CNN) and state-of-the-art in terms of image segmentation. This variant of a Deep Neural



Network detects objects in an image and generates a high-quality segmentation mask for
each instance.
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Figure 14A. A) Tiles (grid in black) for RCNN Mask prediction. Note: Areas without tiles
indicate the non-existence of irrigation center pivots, according to the map made available
by ANA for the year 2019.



5.2.3 Classification
5.2.3.1 Classification scheme

The RCNN was trained to identify and individualize each center pivot irrigation. Semantic
segmentation considers two classes, (binary classification), 1 for ‘pivot’ and 0 for ‘non pivot’.
In instance segmentation, however, each pivot is mapped separately, adding one unique 1D
for each.

5.2.3.2 Feature space

The Normalized Difference Vegetation Index (NDVI) (ROUSE et al., 1974) was calculated for
each image in order to generate standard deviation and percentiles metrics, as presented by
Table 4A. These metrics were chosen seeking to capture not only the temporal variation of
NDVI in the pivots, but also the variations of other agricultural targets outside of pivots (such
as pasture, barren soil, native vegetation, etc).

Table 4A. Index and metrics used to individualize center pivot irrigation.

Indexes | NDVI

Metrics | stdDev, 75th percentile, 100th percentile

5.2.3.3 Classification algorithm, training samples and parameters

Instance segmentation is performed from a pre-trained neural network of Mask RCNN type
architecture. This architecture was developed in Python, using the Pytorch framework, along
with the Detectron 2 package. Figure 15A represents the flowchart of the entire Mask RCNN
training process.
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Figure 15A. Pipeline to use Detectron2 to pivot instance segmentation.
5.2.4 Post-Classification

Post processing of the center pivot irrigation has two more steps besides the spatial and
temporal filters, which are focused for solving pivots ‘union’ and ‘edge’ problems.

5.2.4.1 Union Problem

Union problem consists of a false pivot generated between real pivots that are overlapping.
Figure 16A exemplifies this problem as well as its resolution.

Figure 16A. Illustration of the problem of the union between two or more center irrigation
poles. A) union problem; B) result of the filter applied to solve the union problem.



To solve this union problem it is necessary to find the ID of the false pivot (generated by
union of two or more pivots through a sum of true IDs), and then identify the IDs pivots that
generated this false pivot ID. Based on this information it is possible to replace a false ID to a
true ID, from one of pivots that generated this false ID.

5.2.4.2 Edge Problem

The edge problem is a result of the shape and size of the RCNN Mask input. Some pivots will
inevitably be "cut off" due to the size of the input tiles, i.e. one part of the pivot will be in
one block (tile) and the other part will be in another adjacent block. The edge problem was
solved with the application of two complementary filters (erosion and dilation) and a
reduction by spatial connectivity. Figure 17A shows an example of an application to solve
edge problems (A).
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Figure 17A. A) Example of application of morphological filter to solve edge problems. A) tiles
with pivot edge problems; B) erosion filter; C) spatial connectivity Reduction and D)
dilatation filter.

The erosion filter is applied to the tiles in order to reduce the size of the instances (pivots)
with the goal of isolating them from each other (B). Then, pivots that were "cut off" by the
tile of the RCNN Mask and that exist in the overlap of both boundary images are connected
(C). Finally, after this step it is necessary to apply the morphological dilation filter to return
pivots to their original size (D).



5.2.4.3 Temporal filter

For temporal consistency of the IDs over time, a temporal filter was applied with the goal
that each pivot remains with the same ID over the years. In this step, a reference image was
generated through the accumulation function of all years (2015 to 2022), thus the reference
image has all the pivots of the time series and their respective IDs. An accumulation of
pivots must be calculated for each year, for example, the accumulation of the year 2020 has
the pivots of the years 2015, 2016, 2017, 2018, 2019, and 2020.

5.2.4.4 Spatial filter

A spatial filter was used to remove areas smaller than 10 hectares, so that the noise caused
by the accumulation function is excluded, as shown in Figure 18A.

Figure 18A. Example of spatial filtering. Pivot polygons in red noise generated by the
accumulation function that are removed through the spatial filter.

5.2.5 Validation strategies

To validate the instance segmentation (Mask RCNN) and semantic segmentation (Unet)
methodologies the Jaccard index was calculated. The Jaccard index (JACCARD, 1901), also
known as the Jaccard similarity coefficient or intersection over union (I0U), is a statistic used
for gauging the similarity and diversity of sample sets and is defined as the size of the
intersection divided by the size of the union of the sample sets (Figure 19A).
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Figure 19A: Index Jaccard (I0OU) calculation.

The spatial similarity of the Unet results with the Mask RCNN results obtained for the year
2019 was 61.7%. The location data of the center pivots of public irrigation by ANA showed
63.1% similarity with the results obtained from the RCNN Mask. The similarity between ANA
and Unet data was 78.4%. It is important to note that instance segmentation is a new
methodology that is still under development.

5.2.6 Results

Mask RCNN returns as output a raster of the input mosaic size (15 x 15 km) composed of O,
which corresponds to no detection of center irrigation pivots and values corresponding to
the ID of the classified pivots. Figure 20A shows the input and output of the RCNN Mask
prediction.
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Figure 20A. Result of the Mask RCNN prediction.



5.3 Center Pivot Information

Crop and environmental characteristics of center pivot irrigation were obtained to each
individual pivot. Thus, using the geometry of each pivot, the following information was
extracted: i) crop cycles number of each pivot; ii) start and end dates of each cycle; jii) crop
cycle length in days of each cycle; and iv) daily average precipitation of each cycle. Besides
this, it was also possible to obtain the information if the pivot was in a perennial cultivation
area, and if it did not present internal coherence — due to multiple crops at the same time or
complex management —, it was not possible to obtain the previous information (i, ii, iii and
iv) and the pivot is defined as a non-classified.

5.3.1 Image selection

The period used to select the images to obtain a temporal EVI2 curve was based on the crop
year. The crop year is different from the conventional year (from January to December),
since the crop year aims to define the period when the cultivation occurs in a determined
region. Thus, depending on the type of agriculture, the crop year can start in any month of
the year, generally following the rainy season, since in this period there is humidity available
to the crop development. Thus, to attribute information for each center pivot irrigation,
Landsat images (TOA) were selected from a crop year, in order to compute the EVI2 time
series.

The crop year was defined automatically for each Landsat scene and year. We defined the
crop year as 3 months before and 9 months after the mean vegetative peak month of each
scene, based on an EVI2 curve of MODIS observations.

5.3.2 Method to attribute information to each pivot
5.3.2.1 Crop cycles number

The first information obtained, that is a base to obtaining the others, was the number of
crop cycles of each pivot. An EVI2 curve of Landsat images from the crop year was smoothed
to minimize noise and to reconstruct the time series. The Whittaker method (WHITTAKER,
1922) was used to smooth EVI2 temporal series, since this method presents a great
alternative to smooth and to reconstruct temporal series, most importantly keeping only
meaningful variations and preserving the temporality of them.

Based on the smoothed EVI2 curve, it was possible to identify when inflections occur in the
curve, that is, the change of direction of the curve. Thus, it was possible to identify the
points of valleys (defined as the inflections of change from negative to positive sign), and
peaks (defined as the inflections of change from positive to negative sign) (Figure 21A).
Finally, to define the number of cycles, this can be counted as the number of peaks (or
valleys minus one), determining the number of crop cycles in a period.
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Figure 21A: Peaks and valleys identification based on the smoothed EVI2 time series curve.
5.3.2.2 Start and end cycles dates

After identifying the peaks and valleys over the EVI2 time series, it was possible to
determine the start and end dates of each cycle. In this step we sought to identify the dates
of the valley inflections of the EVI2 curve of each pivot. According to the amount of Landsat
images available in the crop year, where each one represents a binary information of valley
(1) or no-valley (0), it obtained a percentage of presence of pixels identified as valley (1).
Then, after valleys date identification it was checked if the quantity of them was equivalent
to the expected quantity for the number of cycles of the pivot (number of cycles +1). If this
information is true, the pivot is considered well identified, if not, the pivot is considered as
non-classified, since due to the internal dynamics (this usually occurs for pivots with
different crops at the same time) it was not possible to identify a spatial coherence in the
start and end date definition.

The valley dates were used as a base to determine start and end cycle dates. Based on the
daily interval between the two valleys that compose a cycle, the start date was defined as
the 20th percentile value, and the end date as the 80th. This was done to reduce cycle
coverage to the period where the crops were active, eliminating soil management periods
(JONSSON and EKLUNDH, 2004). To avoid omitting the planting period, a -15 days buffer was
also added to the start cycle dates.

This cycle delimitation method has some known issues, such as the delimitation of cycles
based only on the time value. Improvements in this area will be sought for future
collections.

5.3.2.3 Crop cycle length

Crop cycle length in days was obtained as a difference between the end and start date of
each pivot for each cycle.



5.3.2.4 Average Daily Precipitation

For Precipitation information we used data from Climate Hazards Group Infrared
Precipitation with Stations (CHIRPS) product (FUNK et al., 2015), that provide daily and
sub-daily precipitation information for quasi—global spatial coverage (50°S-50°N), from
1981-present, in a 0.05° x 0.05° of spatial resolution. Based on CHIRPS data it was obtained
an accumulation precipitation of each pivot and then this amount of precipitation was
divided by the number of the days of each cycle, resulting in an average daily precipitation
per cycle.

5.3.2.5 Additional Information

In addition to the number of crop cycles, start and end dates, and precipitation information,
the product also provides additional information about non-classified, perennial and
sugarcane pivots.

Perennial and sugarcane pivots were identified using the respective maps from MapBiomas
Collection 9, since cycles and environmental information were only accounted for temporary
crop pivots.

Pivots in which it was not possible to identify the start and end dates of each cycle were set
as non-classified. This problem can be due to a number of factors. For instance, pivot
internal crop dynamics, when there are multiple crops on a single pivot, or the same type of
crop, however at different times. There is also the possibility of errors inherited by the
individualization of pivots methodology, since a not well-defined geometry may encompass
other land uses or surrounding crops. In these situations, it was not possible to identify
coherent start and end dates, since there is no agreement inside the pivot geometry. Figure
22A presents some examples of when it is possible to identify start and end dates and when
this identification is not possible, resulting in non-classified pivots.
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Figure 22A: Examples of start and end dates identification, and limitations that cause
non-classified pivots.

Example 1 shows a pivot in three different Landsat dates. The shaded area represents the
area identified as a valley date. In the first image (16/01) there are approximately one
quarter of the pivot identified as a valley. This amount is even less in 17/02. However, in the
second date (01/02), most of the pivot was identified as a valley, providing a valley date
information.

Example 2, on the other hand, presents a more complex situation. In these three dates
(16/01, 01/02, and 17/02), there is not a single image where most of the pivot is identified
as valley. In this situation there is no possibility to obtain start and end dates by the same
method as before (statistical mode), so pivots in this or similar situations were set as
non-classified. This is a known flaw in the methodology and improvements will be sought in
future collections.

5.3.3 Validation strategies

From the total of classified pivots, 250 of them were randomly selected and evaluated year
by year, visually, in order to validate the consistency in terms of class, start and end dates of
each cycle, and also the consistency of number of cycles. This total (250) represents
between 3 to 6% of total pivot amount, depending on the year, since the number of pivots
increases over the years.



The following errors were considered: (1) cycle number errors, when a pivot shows a
difference between the number of cycles identified in the methodology and the visual
analysis; (2) dates errors, when the pivot has at least one cycle where the start and end
dates are not consistent with the expected in the vegetation index curve; (3) class errors,
where the pivot was misclassified in any way. The first two errors can occur at the same
time, and when so it is likely that the pivot was mostly not well defined. However, the errors
individually do not indicate that the pivot is entirely wrong. Class errors can be associated
with an omission from the sugarcane and perennial masks. Cycle number and date errors
individually show that a cycle in the pivot was misidentified in some way, but not necessarily
all of its cycles. Figure 23A presents the rates (%) of pivot without any kind of error, with only
one error and with two errors.
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Figure 23A: Percentage of pivots without errors, with only one error and with two errors
identified in 250 pivots selected randomly.

The results presented in the Figure 23A above, show that about 57.2 to 68.4% of pivots
randomly selected have none of the analyzed errors, while around 24.4 to 31.2% of samples
presented only one error, and 7.2 to 12.4% of data evaluated presented two types of errors.
The analysis also provides information about the type of these errors identified. Figure 24A
presents the error rates identified by the pivots sample randomly selected.
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Figure 24A: Percentage of type of errors identified in 250 pivots selected randomly.

Figure 24A informs us that we have two main types of errors on pivots. For instance, errors
due to incorrect cycle accounting are about 15 to 25% of the errors identified. About 19.6 to
25.2% of errors are related to errors in identifying the start and end dates of cycles, and less
than 7% of errors are related to errors in pivot class, i.e. classification of the type of use and
coverage of that pivot.

5.3.4 Results

The results presented in Figure 25A highlight about the exemple about the expansion of the
pivots over Minas Gerais, detailing about the intensification of the agriculture through the
irrigation, showing the number of pivots, for each year, with 1, 2 and 3 cycles.
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Figure 25A: Number of center pivot irrigation with one, two and three cycles, perennial,
sugarcane and non-classified in Minas Gerais state.

Overall, in Brazil, 19% of center pivot irrigation has one crop cycle, while 46% present two
crop cycles, and approximately 1% were cultivated three times over the analyzed years
(2015-2022). In addition, approximately 24% of center pivot irrigation was not classified as a
function of methodology limitation. Around 6% of these pivots were identified as perennial
pivots and 5% as sugarcane.

In addition to this information on the expansion and intensification of agriculture, in
terms of the number of gullies, some other information on the dynamics of gullies can also
be obtained from this product. For example, for the state of Minas Gerais, some general
information about the region’s crop dynamic was summarized. It was possible to identify the
months of start and end cycle, the number of days of each cycle and how much precipitation
occurred in this period, also to each cycle. Figure 26A presents a temporal average of this
information for the pivots identified with crop dynamics (pivots with 1, 2 or 3 cycles), in the
Minas Gerais state.
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Figure 26A: Summary of pivot dynamics for Minas Gerais state.

In Figure 26A presented above, it is possible to see that both the start and end months of
each cycle, as well as its duration and daily average precipitation varies according to the
number of times the pivots have been cultivated in the year.

For instance, on pivots with one single crop cycle, the cultivation usually starts in December
with a harvest occurring around July. Pivots with only one cycle present a longer cycle
duration, of approximately 155 days,. The daily precipitation is about 2.94 mm/day, since the
cycle also extends over rainy (December, November, January and February, June and July)
and dry (May, June and July) months in this region.

For pivots that present a double-crop there is a different dynamic. In these pivots the cycle
duration is around 115 days for the first cycle and around 107 days for the second cycle.
Comparing pivots with single and double-crops it is possible to verify that for double-crop
pivots the period when the cultivation occurred was usually earlier than the single-crop
pivots, with planting starting around November and harvesting around March. As this first
cycle of the double crop pivots is concentrated in the rainiest months of this region, the daily
average precipitation is higher, around 6.89 mm/day. Regarding the second cycle of
double-crop pivots, this usually starts planting around April and harvesting usually occurs in
August. Because it comprises mainly the winter months, this period presents low
precipitation, with a rate of approximately 0.58 mm/day, indicating that only the
precipitation of the period is not sufficient for the development of the crop, requiring the
use of an irrigation system for this second harvest.

For pivots with triple-crop the crop duration is even shorter than pivots with one or
double-crops. In these pivots with triple-crops, generally the cycles extend from from 80 to



89 days. In addition, the period of cultivation of the first cycle starts earlier than pivots with
single or double-crops, starting in October and the harvest occurring in January. The second
cycle normally starts in February and the harvest occurs in May, while the third cycle extends
from July to September. The first two cycles of triple-crop pivots take place at least partially
in the region's rainy season, with a rate about 6.92 mm/day for the first cycle and 2.66
mm/day for the second cycle, indicating a lower dependency of the irrigation system in the
first cycle compared to the second one. However, during the third cycle precipitation rate is
about 0.56 mm/day, suggesting a significant increase of irrigation importance for crop
development.



B. Number of Cycles

1. Overview of the method

The number of cycles maps were a new product in MapBiomas Collection 9 that aimed to
map the number of crop cycles in each temporary agricultural area in Brazil at the pixel level.
These maps are produced based on an agricultural mask from the latest update of the
MapBiomas 10m collection, which uses Sentinel-2 images at 10m spatial resolution. In this
beta version, updated to Collection 10, annual maps are available from 2017 to 2024, always
comprehending September of the previous year and ending in August of the target year.
There is also a visualization by the mean number of clyces for all years, available in the
Agriculture module inside MapBiomas’ platform.

The method identifies the number of successive crop cycles in each pixel, from the start of
detection of the plants' spectral response after emergence until the response declines with
senescence, without distinguishing between crops. In this way, the product takes into
account both the cycle of commercial crops for grain production and those intended only to
produce biomass for ground cover in the off-season of the main crop. As a result, in some
regions the area identified as having more than one cycle per year may be larger than that
estimated by the official organizations that carry out crop surveys, as these only focus on the
cycles of grain-producing crops.

2. Time-series construction

Sentinel-2 images were used to construct the time series, providing a temporal resolution of
approximately five days. The images were acquired and processed using the Google Earth
Engine (GEE). To highlight the spectral behavior of the vegetation, the Enhanced Vegetation
Index 2 (EVI2) was calculated from bands 5 and 8, referring to the red and near infrared. The
time series were constructed by crop year from 2017 to 2023, starting in September of the
previous year and ending in August of the target year.

As it was desirable to have temporal consistency in the series and consequently not exclude
any data, cloud and shadow masking was not applied. In order to remove noise and highlight
cyclical behaviors, we opted to apply a smoothing technique to the series.

2.1 Time-series smoothing

The Harmonic Analysis of Time Series (HANTS) was used for smoothing, or more specifically
an adaptation of the HANTS-GEE package. HANTS is a common technique for reconstructing
time series and, like techniques based on the Fourier transform, it uses a decomposition of
the time series into frequencies and considers high frequencies to be noise (Zhou et al.,
2023). The parameters were defined based on tests with a visual assessment of the
consistency of the results. Standard values were used, except for: number of harmonics of 5;
adjustment error tolerance of 0.15; and maximum iterations of 2.
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Figure 1B: Example of original EVI2 data and smoothing using HANTS in a series with two
cycles.

3. Delimitation of crop cycles

To quantify the frequency of cultivation, an algorithm was developed to detect the
occurrence of cultivation cycles based on inflections in the EVI2 curve. On a pixel scale, from
the time series of values, the difference of each value in the time series with the
immediately preceding and following value is calculated. Inflections in the curve are
detected as a peak, when both differences are greater than zero, or as a valley, when both
are less than zero. A crop cycle consists of a peak, which represents the greatest vegetative
vigor of a period, and two valleys, which represent the beginning and end of the cycle, being
an approximation of planting and harvesting.
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Figure 2B: Example of peak and valleys detection in a curve with two cycles.

Filters were applied to the detected inflections to avoid the influence of imperfections in the
residual EVI2 curve from smoothing, which can generate false peaks and valleys. Two



parameters were provided to the algorithm: (1) minimum peak value, which is the lowest
possible value for identifying an inflection as a peak, regardless of differentiation to adjacent
values; and (2) minimum amplitude, or the minimum difference between a peak and the
nearest valleys. These parameters were defined empirically as 1 for the minimum peak value
and 0.7 for the minimum amplitude.

The frequency was calculated from the count of peaks detected in a series, which
corresponds to the number of times that site was cultivated in the agricultural year, which
usually varies from one to three times.

4. Accuracy evaluation

To check the accuracy of the mapping, the measured values were cross-referenced with the
mapping of Center Pivot Irrigated Agriculture in Brazil (ANA, 2023), carried out by the
National Water Agency (ANA). Among the various years mapped, the 2022 mapping
identifies the dynamics of annual crops in all center pivot irrigation systems in the country,
including, among others, pivots with one, two or three annual cycles. This data was chosen
as a reference because it makes the same distinction as the result we intend to evaluate,
although the scope of the validation is reduced to agriculture in this type of system only. The
data is available free of charge from the ANA in vector format, and was rasterized with a
spatial resolution of 10 m to make it compatible with the result to be evaluated. To avoid
edge effects resulting from rasterization, pixels up to 50 m away from the edge of the central
pivots were disregarded.

The evaluation was carried out in an area on the west region of Bahia state, corresponding
to two Sentinel-2 imaging scenes: 23LLF and 23LMF. A stratified sampling of the reference
map was carried out, where 500 samples were taken according to the proportion of each
value. This totaled 182 points for one cycle, 270 points for two cycles and 48 points for three
cycles. The points were cross-referenced with the results obtained for the 2021/2022
agricultural year, consistent with the period of the reference map, and a confusion matrix
was constructed. Metrics were calculated for global accuracy (GA), producer accuracy (PA)
and user accuracy (UA) per number of cycles.

HANTS
N. cycles One |[Two Three
PA 0,87 0,99 0,85
UA 0,98 0,92 0,82
GA 0,94

Table 1B: Accuracy metrics for the 2022 frequency map in the selected area.



5. Limitations

This beta version is a proof of concept of the method's viability on a large scale. Some
inaccuracies are expected and can be a result of several known limitations, such as:
crop-year being defined as the same period for the whole country, which in reality varies
between regions; parameters being defined as the same for the whole country, which does
not take into account possible variability of vegetative vigor (i.e. max and min EVI2) between
biomes; no current way to discern if a detected cycle was a crop meant for
commercialization or just a cover crop to manage the soil; lack of comparable data for a
comprehensive accuracy evaluation. These problems are expected to be addressed in future
revisions of the method.



C. Land Use Land Cover - Second Season

1. Overview of the method

This section describes the production of annual Second Season maps for corn in Brazil at 30
m spatial resolution from 2000 to 2024 using Landsat Collection 2 surface reflectance
imagery. The workflow follows the main Land Use Land Cover (LULC) map’s pixel-based
paradigm (seasonal mosaics, engineered feature space, Random Forest classification,
integration to LULC, and selective post-processing), but is tailored to second season
phenology and implemented state-by-state. This section mirrors the Agriculture and Forest
Plantation Appendix’s organization and terminology while specifying the operational choices
effectively adopted here.

We mapped second-season crops with emphasis on corn (primary target) and cotton, using
a three-class training scheme: (1) corn, (2) cotton, and (3) aggregated other temporary
crops. Classification was executed per state, not per Landsat scene, using a single statewide
geometry in each case to standardize normalization and reduce edge artifacts across scenes.
State-specific temporal windows (see below) were the only systematic variation across
states.

Image selection windows were designed to capture the second-season vegetative peak. As a
baseline, February—May was adopted in the Mato Grosso pilot and then adjusted by state
according to the official agricultural calendar (CONAB) and visual inspection of monthly
mosaics.

Input data comprise Landsat Collection 2 surface reflectance, processed over a single
statewide geometry per Federative Unit (UF). Sensor allocation follows fixed rules:
2000-2002 rely on Landsat 7 (LEO7) only; 2003-2011 on Landsat 5 (LTO5) only; 2012 uses a
merged LTO5+LEO7 stack; 2013-2024 employ Landsat 8 (LCO8) every year, with Landsat
(LCO9) included where available (e.g., 2023; note 2013 = LCO8 only, 2023 = LCO8+LC09). For
each year, scenes are constrained to the second-season window defined for the state
(baseline 1 February—31 May), filtered by CLOUD_COVER_LAND < 40%, and masked using
QA _PIXEL to remove cloud (bit 3), cloud shadow (bit 4), snow (bit 5), and dilated
cloud/water (bit 2). Bands are harmonized to a common set—BLUE, GREEN, RED, NIR,
SWIR1, SWIR2—by mapping bands SR _B1-B5,B7 for LTO5/LEO7 and SR_B2-B7 for
LCO8/LCO9; EVI2 is computed per image and appended prior to seasonal compositing.

For each target year and state, we built a seasonal mosaic by reducing the filtered collection
with median and percentiles (p20, p80) over the bands BLUE, GREEN, RED, NIR, SWIR1,
SWIR2 and the EVI2 index. The resulting metrics were normalized with fixed clamps (same
limits across years and states) prior to classification.



To stabilize the model across sensors/years, we adopted a two-year composite training for
each epoch and applied a single Random Forest per epoch across the entire period:

e 2000-2012: RF(100 trees) trained with 2007 and 2012 samples, then applied to
2000-2012;

e 2013-2024: RF(100 trees) trained with 2013 and 2023 samples, then applied to
2013-2024.
Class labels were restricted to the three classes above; “other temporary crops” served to
regularize decision boundaries between corn/cotton and non-targets within the
second-season window.

For each year, the appropriate epoch classifier was applied to the normalized mosaic.
Outputs were then restricted to agricultural areas using the MapBiomas Collection 10
integration map. The agricultural mask was implemented by remapping classes [39, 41, 62,
20] — [1, 1, 1, 0] (keep vs. exclude) before masking. This step follows the module’s
integration logic for harmonizing class-specific products with the LULC map.

Spatial/temporal filtering was not universally applied. After targeted analyses, we executed a
unified filter (eight-neighborhood connectivity; min-patch = 8 for 2000-2012 and = 20 for
2013-2024; class-wise temporal persistence rules) only in five states where it improved
coherence. In other states, masked raw predictions were retained to preserve genuine
interannual variability.

As a validation approach, consistency was assessed against official planted-area series from
CONAB and IBGE/PAM (state and national levels). Where available (e.g., Mato Grosso, 2023),
external point/reference samples were incorporated. Accuracy reporting follows the
module’s convention (overall accuracy and user/producer accuracies when independent
points exist), with detailed metrics presented in the Evaluation section.

To contextualize the geographic scope, the mapping focuses on UFs where second-season
corn predominates and the second season calendar is well defined (e.g., MT, MS, GO, PR, SP,
MG, BA, MA, PI, TO). In contrast, Rio Grande do Sul (RS) and Santa Catarina (SC)—despite
being corn producers—were not included because production there is predominantly first
season, and the concept of a statewide second season is not consistently defined. These
states therefore fall outside the intended scope of this product at this time.
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Figure 1C — Corn production in Brazil (3-year average, 2019-2021).

Municipality-level distribution of corn production highlighting concentration in
central-western and southern Brazil. Figure 1C supports the selection of UFs prioritized for

second season mapping and explains the exclusion of RS and SC, where corn is primarily first
season.



2. Input imagery and quality assurance

Input data consist of Landsat Collection 2 surface reflectance (SR) processed over a single
statewide geometry for each UF. This choice enforces uniform normalization and
compositing within each state and avoids discontinuities at images’ scene boundaries. For
every target year, scenes are constrained to the second-season temporal window defined for
that state (see Section 3), screened by CLOUD_COVER_LAND < 40%, and masked with
QA _PIXEL to remove cloud, shadow, snow, and dilated cloud/water artifacts. Spectral bands
are harmonized to a common set (BLUE, GREEN, RED, NIR, SWIR1, SWIR2) across sensors,
and EVI2 is computed per image prior to seasonal compositing so that both reflectance and
vegetation dynamics contribute to the feature space.

2.1 Sensors and allocation by period

Sensor usage is fixed by period to maximize radiometric consistency and availability within
the February—May window used:

Table 1C — Sensor allocation by period (Landsat C2 SR)

Years Sensor(s) used Notes

2000-2002 LEO7 (ETM+) ETM+ SR; statewide
geometry per UF

2003-2011 LTO5 (TM) TM SR; statewide geometry
per UF

2012 LTOS + LEO7 Merged collections within
the UF window

2013-2024 LCO8 (OLlI) OLI SR every year

2013-2024* LCO9 (OLI-2) Included where available
(e.g., 2023); 2013 = LCO8
only; 2023 = LCO8+LC09

*LC09 is additive to LCO8 when available in the state window.

2.2 Scene filtering and QA masks

All images within the state-specific window are first filtered by the land cloud fraction and
then masked with QA bits to suppress contaminated pixels. Including the dilated
cloud/water bit is important to eliminate halos adjacent to cloud/water features that
otherwise propagate into the seasonal composite.

Criterion Rule / Bit (QA_PIXEL) Purpose

Land cloud cover CLOUD_COVER_LAND < 40% | Coarse scene prefilter

Cloud bit3=1 Remove cloud cores




Cloud shadow bitd=1 Remove shadows
Snow bit5=1 Remove snow/ice flags
Dilated cloud / water halo bit2=1

Remove morphological
halos (buffers)

2.3 Band harmonization and index computation

Table 2C — QA rules used in masking

To ensure a consistent feature space across sensors, SR bands are mapped to common
names before compositing. The EVI2 index is computed per image and appended to the

stack.

Sensor Input SR bands Common names used
LTO5 / LEO7 SR_B1, SR_B2,SR_B3, BLUE, GREEN, RED, NIR,
SR_B4, SR_B5, SR_B7 SWIR1, SWIR2
LCO8 / LC09 SR_B2, SR_B3, SR_B4,

SR_B5, SR_B6, SR_B7

BLUE, GREEN, RED, NIR,
SWIR1, SWIR2

Table 3C — Band mapping to common names




The per-image EVI2 layer is carried forward to seasonal reduction alongside the six
reflectance bands, guaranteeing that the seasonal mosaic summarizes both spectral levels
and within-window vegetation behavior.

3. Temporal windows

Temporal windows were designed to isolate the vegetative peak of second-season crops
while remaining simple and reproducible across years and sensors. A baseline 1 February—31
May window was established during the pilot and then fixed per state (UF) after two checks:
(i) the official agricultural calendar (to anchor sowing/harvest timing) and (ii) visual
inspection of monthly Landsat mosaics (to confirm the greenness peak within the
second-season period).

3.1 State-specific configuration

Final windows are specified as day-month ranges and remain unchanged across the time
series. The same configuration applies to the epoch training years (2007, 2012; 2013, 2023)
to maintain feature comparability with their respective prediction years.

UF Start (DD-MM) End (DD-MM)
BA 01/abr 30/ago
GO 01/fev 31/mai
MA 01/fev 31/mai
MG 01/fev 31/mai
Ms 01/fev 30/jun
MT 01/fev 31/mai
PI 01/fev 30/jun
PR 01/fev 31/jul
SP 01/mar 30/jun
TO 01/fev 31/mai




Table 4C — Second-season windows by state (fixed for 2000—2024).

4. Sample collection and labeling

Training data were assembled to reflect second-season phenology and the spectral signature
of target crops within the UF-specific window. Three classes were used throughout: (1) corn,

(2) cotton, (3) other temporary crops (aggregated). Sampling and labeling were performed

per state over the statewide geometry, using the same fixed window later employed in

prediction.

4.1 Corn sample selection

Corn points were labeled by combining EVI2 time-series behavior with the characteristic

spectral response at peak vegetative stage:

08

06

EVI2

04

02

00

e Phenology (EVI2 curve): Candidate pixels must show a well-defined rise and peak

within the UF window, followed by a decline consistent with second-season corn. The
curve is inspected at monthly cadence; pixels with flat or multi-modal signatures
inconsistent with a single second-season cycle are excluded.

Spectral signature at peak (NIR-SWIR1-RED composite): At the vegetative peak,
corn fields exhibit a reddish/orange tone in false-color composites (NIR/ SWIR1 /
RED), driven by high NIR reflectance (vigorous canopy), moderate SWIR and lower
RED. Candidate pixels were verified visually against this tone at/near the EVI2

maximum.

Série temporal de EVI2

Data



Figure 2C — Corn labeling cues. Example monthly sequence (top) and EVI2 curve (bottom)
illustrating (i) the single pronounced peak within February—May and (ii) the reddish/orange
response in NIR-SWIR1-RED at the peak.

4.2 Cotton and “other” samples

Cotton points were labeled with the same two-step logic—temporal consistency in EVI2
within the window and textural/tonal cues in NIR-SWIR—RED (cotton typically shows distinct
brightness/texture near peak and into senescence). The “other temporaries” class
aggregates annual crops present in the same window that are not corn. Including it stabilizes
the decision boundary and reduces confusion with non-target annuals that may share part
of the spectral/temporal space.

4.3 Epoch training sets

Two composite training sets were assembled and then applied to their respective epochs:

Epoch Training Primary sensors in Notes on sources
years window
2000-20 | 2007, 2012 2007: LT05; 2012: Manual labeling per UF; statewide
12 LTO5+LEO7 window; balance by class
2013-20 | 2013, 2023 2013: LCO8; 2023: Manual labeling per UF; additional MT
24 LCO8+LC0O9 references available (2023)




Table 5C — Training years and sources.

Where available (e.g., MT/2023), external references supported the curation of corn/cotton
seeds. Samples were extracted from the state’s seasonal mosaic at 30 m resolution using the
full feature list (six bands + EVI2 x {median, p20, p80}). Sampling preserved the class labels
(class € {1,2,3}) and the corresponding year (one of the training years in the epoch). These
per-year sample sets were then merged to form a single composite training table per epoch.

4.4 Model training and inference

Random Forest with 100 trees is used as the classifier, consuming 21 features per pixel (six
harmonized SR bands plus EVI2, each summarized by median, p20, p80 within the UF
window). Training follows a three-class scheme (1=corn, 2=cotton/other temporaries,
3=other) and is conducted over the statewide geometry to keep normalization and
compositing consistent across each UF.

Two epoch models are adopted and transferred across their respective years: 20002012
trained with 2007 and 2012 samples; 2013—-2024 trained with 2013 and 2023 samples. For
each epoch, per-UF samples from the two training years are merged into a single table,
preserving class and year; when “other temporaries” are abundant, a cap is applied to avoid
dominance and maintain class balance. Training years use the same UF-specific window later
used in inference, ensuring feature comparability across time.

5. Annual prediction and agricultural masking

Per year x UF, the epoch model (Section 4.4) is applied to the seasonal mosaic assembled
with the UF’s fixed second-season window. The output is a raster in the three-class scheme
{1=corn, 2=cotton/other temporaries, 3=other}. Prediction is executed over the statewide
geometry, ensuring uniform normalization and avoiding scene-edge artifacts.

Predicted rasters are then restricted to agricultural areas using the MapBiomas Collection 10
integration map. The agricultural mask is implemented by remapping target/non-target
classes and masking out the remainder, as summarized below.

Source class (C10 integration) Meaning (short) Keep in mask | Remap
39 Annual cropland Yes 1
41 Soybean / temporary Yes 1
crop
62 Mosaic of agriculture Yes 1
20 Sugarcane No 0




Table 6C — Agricultural mask (MapBiomas C10 integration).

The mask is applied after classification. Pixels mapped to O (e.g., sugarcane and
non-agricultural classes) are removed; pixels mapped to 1 retain the predicted class {1,2,3}.

6. Post-processing filters

Post-classification filtering is applied selectively to improve spatial coherence and temporal
stability. The filter routine combines class-wise spatial connectivity with year-to-year
consistency rules and was executed only in five UFs where it delivered measurable gains. In
other UFs, maps remain as masked predictions (no filter) to preserve genuine interannual
variability.

6.1 General design
Filter operates in two class-specific stages (1=corn, 2=cotton):

Pre-connectivity: Apply connected-component filtering on binary masks (8-neighbor). The
minimum patch size varies by epoch: 8 pixels for 2000-2012 and 20 pixels for 2013-2024.

Temporal consistency + post-connectivity: Enforce inclusion/keep rules by year (below),
then re-apply connectivity with the same year’s minPatch. The final label is mutually
exclusive (class 3 “other” is not filtered).

Component Setting / value
Neighborhood 8-connected
minPatch (2000-2012) 8 pixels
minPatch (2013-2024) 20 pixels
Output per year class € {0,1,2} (0 = masked
out)




Table 7C — Filter parameters

6.2 Temporal rules by block

Rules are applied after the pre-connectivity step (8-neighbor, year-specific minPatch) and
separately for each class (corn=1, cotton=2). For every year, the rule produces temporary
masks per class; then post-connectivity is applied with the same year’s minPatch.

Year 2000 — persistence with 2001

Keep a pixel in 2000 only if that same class is also present in 2001. After this check, apply
post-connectivity.

(Example: a corn pixel in 2000 is kept only if that pixel is also corn in 2001.)

Years 2001-2021 — inclusion + keep (moderate)
Two checks run for each yeary:

e Inclusion: keep the pixel iny if it is mapped as that class in y, or if it appears in both
y—1 and y+1. Also require that the other class is not present in y (to avoid immediate
conflicts).

(Example: for y=2010, a corn pixel is included if it’s corn in 2010, or if it’s corn in
2009 and 2011; and it must not be cotton in 2010.)

e Keep: once included, keep the pixel in y if there is support in any of the neighboring
years y—1, y+1, y+2, or y+3 for the same class, or if there is paired support of the
other class in y—1 and y+1 (this paired support term stabilizes boundaries where
corn/cotton alternate across years).

(Example: still for y=2010, corn remains if corn appears in 2009, 2011, 2012, or 2013;
it also remains if cotton appears in both 2009 and 2011, which helps avoid flipping at
field boundaries.)

After inclusion and keep, apply post-connectivity and enforce class precedence (cotton over
corn).

Year 2022 — *1 inclusion, with look-ahead for keep

® Inclusion: keep the pixel in 2022 if it is mapped in 2022, or if it appears in both 2021
and 2023 for the same class; also require that the other class is not present in 2022.
(Example: a corn pixel is included if corn is present in 2022, or if corn is present in
2021 and 2023; and it must not be cotton in 2022.)

e Keep: once included, keep the pixel in 2022 if it has support in 2021, 2023, or 2024
for the same class, or paired support of the other class in 2021 and 2023.
(Example: corn in 2022 is retained if corn appears in any of 2021, 2023, or 2024; it is
also retained if cotton appears in both 2021 and 2023.)

Then apply post-connectivity and class precedence.



Year 2023 — bridge with 2022 & 2024

e Inclusion: keep the pixel in 2023 if it is mapped in 2023, or if it appears in both 2022
and 2024 for the same class; also require that the other class is not present in 2023.
(Example: a corn pixel is included if corn is present in 2023, or if corn is present in
both 2022 and 2024; and it must not be cotton in 2023.)

e Keep: once included, keep the pixel in 2023 if it has support in 2022 or 2024 for the
same class, or paired support of the other class in 2022 and 2024.
(Example: corn in 2023 is retained if corn appears in 2022 or 2024; it is also retained
if cotton appears in both 2022 and 2024.)

Then apply post-connectivity and class precedence.

Year 2024 — connectivity only (no temporal blending)

For 2024, do not use any temporal rule. Keep pixels of each class that pass connectivity in
2024 and then enforce class precedence.

(Example: a corn pixel is kept in 2024 solely based on the 2024 connectivity threshold; 2023
is not consulted.)

UF Filter applied | Notes (observed gain / remarks)

Cloudy mosaics in the window; the
filter would spread gaps and artifacts;
BA No Too few good scenes in some years;
temporal rules became unstable, so

we kept the masked map.

Cleaner fields and more solid
patches; small dots were removed;

GO Yes . .
Year-to-year swings were reduced in
the main crop areas.
Cleaner fields and more solid
patches; small dots were removed,;
MA Yes

Year-to-year swings were reduced in
the main crop areas.




MG

No

Cloudy mosaics in the window; the

filter would spread gaps and artifacts;

Too few good scenes in some years;

temporal rules became unstable, so
we kept the masked map.

MS

Yes

Cleaner fields and more solid
patches; small dots were removed,;
Year-to-year swings were reduced in
the main crop areas.

MT

Yes

Cleaner fields and more solid
patches; small dots were removed,;
Year-to-year swings were reduced in
the main crop areas.

Pl

No

Cloudy mosaics in the window; the

filter would spread gaps and artifacts;

Too few good scenes in some years;

temporal rules became unstable, so
we kept the masked map.

PR

No

Cloudy mosaics in the window; the

filter would spread gaps and artifacts;

Too few good scenes in some years;

temporal rules became unstable, so
we kept the masked map.

SP

No

Cloudy mosaics in the window; the

filter would spread gaps and artifacts;

Too few good scenes in some years;

temporal rules became unstable, so
we kept the masked map.




TO

Yes

Cleaner fields and more solid
patches; small dots were removed,;
Year-to-year swings were reduced in
the main crop areas.




Table 8 — UFs with filters applied

Legenda
[ Milho
B Algodao

Figure 3C — Effect of the post-processing filter. Top: NIR-SWIR1-RED false-color mosaic over
the study area at the second-season peak. Bottom-left: classification without filter (legend:
yellow = corn, red = cotton). Bottom-right: classification with filters (8-connected
components; minPatch = 20 for 2013-2024, 8 for 2000-2012). Magenta circles highlight
reductions of speckle and consolidation of field patches after filtering, with improved
boundary coherence and removal of small transients.

6.3 Impact and limitations

Filters reduces speckle and transient 1-2-pixel patches, improves field-level coherence, and
stabilizes interannual dynamics while respecting the class hierarchy. A known trade-off is the
potential erosion of very small fields (below the minPatch threshold), which motivated the
state-selective application based on demonstrated benefit.



7. Validation and evaluation

Validation focuses on (i) a point-based check where independent labels exist and (ii)
temporal consistency against official statistics. All assessments use the final product (after
agricultural mask and, where applicable, filters).

Independent samples are available only for Mato Grosso (MT), 2023 (internal set). These
homogeneous reference polygons (100% corn or 100% cotton) were used in a pixel-based
validation approach, where every 30m pixel within validation polygons was treated as an
independent sample. This provides a more rigorous assessment of classification
performance at the native resolution of the product.

7.1 Spatial accuracy assessment

The validation dataset comprised over 6.3 million pixels across 2,331 homogeneous
reference polygons in Mato Grosso for the 2023 season. Both the original classification and
filtered product were evaluated using pixel-based accuracy assessment.

Metric Original Classification Filtered Product
Overall Accuracy 98.26% 98.65%
Corn Producer's Accuracy 98.3% 98.7%
Corn User's Accuracy 99.97% 99.98%
Cotton Producer's Accuracy 97.5% 98.1%
Cotton User's Accuracy 43.0% 48.1%
Total Pixels 5,734,439 6,305,627

Table 9C- Pixel-based accuracy metrics for corn and cotton classification in Mato Grosso,

2023
Reference: Corn |Reference: Cotton | User's Accuracy
Predicted: Corn 5,561,256 1,859 99.97%
Predicted: Cotton 97,69 73,634 43.0%
Producer's Accuracy 98.3% 97.5%

Table 10C - Original Classification Confusion Matrix

Reference: Corn |Reference: Cotton | User's Accuracy

Predicted: Corn 6,142,745 1,535 99.98%




Predicted: Cotton

83,686

77,661

48.1%

Producer's Accuracy

98.7%

98.1%

Table 11C - Filtered Product Confusion Matrix

The pixel-based validation reveals excellent detection capability for both crops, with
producer's accuracy exceeding 98% for corn and cotton in the filtered product. However,
significant overestimation of cotton is evident, with user's accuracy around 48%. The
filtering process improved overall accuracy by 0.4 percentage points and substantially
enhanced cotton user's accuracy from 43% to 48%, demonstrating the value of the applied

post-processing steps.




References

AGENCIA NACIONAL DE AGUAS (ANA). Atlas irrigacdo: uso da agua na agricultura irrigada
/Agéncia Nacional de Aguas. Brasilia: ANA, 2017.

AGENCIA NACIONAL DE AGUAS (ANA). Levantamento da agricultura irrigada por pivos
centrais no Brasil/Agéncia Nacional de Aguas, Embrapa Milho e Sorgo. 2. ed. Brasilia: ANA,
2019a.

AGENCIA NACIONAL DE AGUAS (ANA). Polos nacionais de agricultura irrigada: mapeamento
de areas irrigadas com imagens de satélite/Agéncia Nacional agricultura irrigada por pivos
centrais de irrigagdo no Brasil - 1985 - 2022/ Agéncia Nacional de Aguas - Brasilia: ANA,
2022. Boletim do SNIRH n. 4.

AGENCIA NACIONAL DE AGUAS (ANA). Mapeamento do arroz irrigado no Brasil. Brasilia: ANA
& Conab, 2020.

AGENCIA NACIONAL DE AGUAS (ANA). Atlas irrigacdo: uso da agua na agricultura irrigada
(22 edicdo)/Agéncia Nacional de Aguas - Brasilia: ANA, 2021a.

AGENCIA NACIONAL DE AGUAS (ANA). Mapeamento do arroz irrigado no Brasil/Agéncia
Nacional de Aguas, Companhia Nacional de Abastecimento. Brasilia: ANA, 2021b.

AGENCIA NACIONAL DE AGUAS (ANA). Levantamento da Agricultura Irrigada por Pivos
Centrais no Brasil. Boletim do SNIRH 4. 2023.

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Mapeamento Agricolas. Available at:
<https://www.conab.gov.br/info-agro/safras/mapeamentos-agricolas?start=20>.

EMPRESA BRASILEIRA DE PESQUISA E AGROPECUARIA (EMBRAPA). Dados conjunturais da
producdo de arroz (Oryza sativa L.) no Brasil (1986 a 2019): area, producdo e rendimento.
Santo Antonio de Goids: Embrapa Arroz e Feijao, 2020. Available at:
<http://www.cnpaf.embrapa.br/socioeconomia/index.htm>. Access on : 07/04/2022.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA (IBGE). 2009. Censo agropecudrio
2006: resultados definitivos. Rio de Janeiro: IBGE, 2009.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA (IBGE). 2019. Censo agropecuario
2017: resultados definitivos. Rio de Janeiro: IBGE, 2019.

Funk, C., Peterson, P.,, Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J.
(2015). The climate hazards infrared precipitation with stations—a new environmental
record for monitoring extremes. Scientific data, 2(1), 1-21.

Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of
vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266.


https://www.conab.gov.br/info-agro/safras/mapeamentos-agricolas?start=20

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et
des Jura. Bull Soc Vaudoise Sci Nat, 37, 547-579.

Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced
vegetation index without a blue band. Remote sensing of Environment, 112(10), 3833-3845.

Jonsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite
sensor data. Computers & geosciences, 30(8), 833-845.

Nagler, P. L., Inoue, Y., Glenn, E. P, Russ, A. L., & Daughtry, C. S. T. (2003). Cellulose
absorption index (CAl) to quantify mixed soil-plant litter scenes. Remote Sensing of
Environment, 87(2-3), 310-325.

Ronneberger, O.; Fischer, P.; Brox, T. (2015). U-Net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention; Springer: Berlin, Germany, 2015; pp. 234-241.

Rouse, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the
great plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite—1
Symposium; NASA SP-351 (pp. 309-317).

Saraiva, M., Protas, E., Salgado, M., & Souza Jr, C. (2020). Automatic Mapping of Center Pivot
Irrigation Systems from Satellite Images Using Deep Learning. Remote Sensing, 12(3), 558.

Whittaker, E. T. (1922). On a new method of graduation. Proceedings of the Edinburgh
Mathematical Society, 41, 63-75.

Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open
water features in remotely sensed imagery. International journal of remote sensing, 27(14),
3025-3033.

Zhou, J., M. Menenti, L. Jia, B. Gao, F. Zhao, Y. Cui, X. Xiong, X. Liu, and D. Li. A Scalable
Software Package for Time Series Reconstruction of Remote Sensing Datasets on the Google
Earth Engine Platform. International Journal of Digital Earth, v. 16(1), pp. 988-1007, 2023



	Document Overview 
	 
	A.​Irrigation Systems 
	 
	B.​Number of Cycles 
	1.​Overview of the method​The number of cycles maps were a new product in MapBiomas Collection 9 that aimed to map the number of crop cycles in each temporary agricultural area in Brazil at the pixel level. These maps are produced based on an agricultural mask from the latest update of the MapBiomas 10m collection, which uses Sentinel-2 images at 10m spatial resolution. In this beta version, updated to Collection 10, annual maps are available from 2017 to 2024, always comprehending September of the previous year and ending in August of the target year.  There is also a visualization by the mean number of clyces for all years, available in the Agriculture module inside MapBiomas’ platform. ​The method identifies the number of successive crop cycles in each pixel, from the start of detection of the plants' spectral response after emergence until the response declines with senescence, without distinguishing between crops. In this way, the product takes into account both the cycle of commercial crops for 
	 
	C. Land Use Land Cover - Second Season 
	1. Overview of the method 
	This section describes the production of annual Second Season maps for corn in Brazil at 30 m spatial resolution from 2000 to 2024 using Landsat Collection 2 surface reflectance imagery. The workflow follows the main Land Use Land Cover (LULC) map’s pixel-based paradigm (seasonal mosaics, engineered feature space, Random Forest classification, integration to LULC, and selective post-processing), but is tailored to second season phenology and implemented state-by-state. This section mirrors the Agriculture and Forest Plantation Appendix’s organization and terminology while specifying the operational choices effectively adopted here. 
	We mapped second-season crops with emphasis on corn (primary target) and cotton, using a three-class training scheme: (1) corn, (2) cotton, and (3) aggregated other temporary crops. Classification was executed per state, not per Landsat scene, using a single statewide geometry in each case to standardize normalization and reduce edge artifacts across scenes. State-specific temporal windows (see below) were the only systematic variation across states. 
	Image selection windows were designed to capture the second-season vegetative peak. As a baseline, February–May was adopted in the Mato Grosso pilot and then adjusted by state according to the official agricultural calendar (CONAB) and visual inspection of monthly mosaics.  
	Input data comprise Landsat Collection 2 surface reflectance, processed over a single statewide geometry per Federative Unit (UF). Sensor allocation follows fixed rules: 2000–2002 rely on Landsat 7 (LE07) only; 2003–2011 on Landsat 5 (LT05) only; 2012 uses a merged LT05+LE07 stack; 2013–2024 employ Landsat 8 (LC08) every year, with Landsat (LC09) included where available (e.g., 2023; note 2013 = LC08 only, 2023 = LC08+LC09). For each year, scenes are constrained to the second-season window defined for the state (baseline 1 February–31 May), filtered by CLOUD_COVER_LAND < 40%, and masked using QA_PIXEL to remove cloud (bit 3), cloud shadow (bit 4), snow (bit 5), and dilated cloud/water (bit 2). Bands are harmonized to a common set—BLUE, GREEN, RED, NIR, SWIR1, SWIR2—by mapping bands SR_B1–B5,B7 for LT05/LE07 and SR_B2–B7 for LC08/LC09; EVI2 is computed per image and appended prior to seasonal compositing. 
	For each target year and state, we built a seasonal mosaic by reducing the filtered collection with median and percentiles (p20, p80) over the bands BLUE, GREEN, RED, NIR, SWIR1, SWIR2 and the EVI2 index. The resulting metrics were normalized with fixed clamps (same limits across years and states) prior to classification.  
	To stabilize the model across sensors/years, we adopted a two-year composite training for each epoch and applied a single Random Forest per epoch across the entire period:​ • 2000–2012: RF(100 trees) trained with 2007 and 2012 samples, then applied to 2000–2012;​ • 2013–2024: RF(100 trees) trained with 2013 and 2023 samples, then applied to 2013–2024.​Class labels were restricted to the three classes above; “other temporary crops” served to regularize decision boundaries between corn/cotton and non-targets within the second-season window. 
	For each year, the appropriate epoch classifier was applied to the normalized mosaic. Outputs were then restricted to agricultural areas using the MapBiomas Collection 10 integration map. The agricultural mask was implemented by remapping classes [39, 41, 62, 20] → [1, 1, 1, 0] (keep vs. exclude) before masking. This step follows the module’s integration logic for harmonizing class-specific products with the LULC map. 
	Spatial/temporal filtering was not universally applied. After targeted analyses, we executed a unified filter (eight-neighborhood connectivity; min-patch = 8 for 2000–2012 and = 20 for 2013–2024; class-wise temporal persistence rules) only in five states where it improved coherence. In other states, masked raw predictions were retained to preserve genuine interannual variability.  
	As a validation approach, consistency was assessed against official planted-area series from CONAB and IBGE/PAM (state and national levels). Where available (e.g., Mato Grosso, 2023), external point/reference samples were incorporated. Accuracy reporting follows the module’s convention (overall accuracy and user/producer accuracies when independent points exist), with detailed metrics presented in the Evaluation section. 
	To contextualize the geographic scope, the mapping focuses on UFs where second-season corn predominates and the second season calendar is well defined (e.g., MT, MS, GO, PR, SP, MG, BA, MA, PI, TO). In contrast, Rio Grande do Sul (RS) and Santa Catarina (SC)—despite being corn producers—were not included because production there is predominantly first season, and the concept of a statewide second season is not consistently defined. These states therefore fall outside the intended scope of this product at this time. 
	 
	Figure 1C — Corn production in Brazil (3-year average, 2019–2021). 
	Municipality-level distribution of corn production highlighting concentration in central-western and southern Brazil. Figure 1C supports the selection of UFs prioritized for second season mapping and explains the exclusion of RS and SC, where corn is primarily first season. 
	 
	2. Input imagery and quality assurance 
	Input data consist of Landsat Collection 2 surface reflectance (SR) processed over a single statewide geometry for each UF. This choice enforces uniform normalization and compositing within each state and avoids discontinuities at images’ scene boundaries. For every target year, scenes are constrained to the second-season temporal window defined for that state (see Section 3), screened by CLOUD_COVER_LAND < 40%, and masked with QA_PIXEL to remove cloud, shadow, snow, and dilated cloud/water artifacts. Spectral bands are harmonized to a common set (BLUE, GREEN, RED, NIR, SWIR1, SWIR2) across sensors, and EVI2 is computed per image prior to seasonal compositing so that both reflectance and vegetation dynamics contribute to the feature space. 
	2.1 Sensors and allocation by period 
	Table 1C — Sensor allocation by period (Landsat C2 SR) 
	2.2 Scene filtering and QA masks 

	All images within the state-specific window are first filtered by the land cloud fraction and then masked with QA bits to suppress contaminated pixels. Including the dilated cloud/water bit is important to eliminate halos adjacent to cloud/water features that otherwise propagate into the seasonal composite. 
	Table 2C — QA rules used in masking 
	2.3 Band harmonization and index computation 
	4.1 Corn sample selection 
	4.3 Epoch training sets 
	4.4 Model training and inference 

	5. Annual prediction and agricultural masking 
	6. Post-processing filters 
	6.1 General design 
	Table 7C — Filter parameters 
	6.2 Temporal rules by block 
	 
	Figure 3C — Effect of the post-processing filter. Top: NIR–SWIR1–RED false-color mosaic over the study area at the second-season peak. Bottom-left: classification without filter (legend: yellow = corn, red = cotton). Bottom-right: classification with filters (8-connected components; minPatch = 20 for 2013–2024, 8 for 2000–2012). Magenta circles highlight reductions of speckle and consolidation of field patches after filtering, with improved boundary coherence and removal of small transients. 
	6.3 Impact and limitations 


