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1 Introduction

1.1 Scope and content of the document

The main goal of the Mapbiomas Water initiative was to map and monitor surface water in
all Brazilian biomes from 1985 to 2024. Since 2020, a group of collaborators organized in
the MapBiomas Water Working Group has been producing a water dataset, based on
Landsat data, to improve the detection and monitoring of surface water dynamics in Brazil.

One of the main results of this collaborative effort is a set of layers with annual water
surface data to add up as a cross-cutting theme to be integrated within the land use and
land cover maps of the MapBiomas Collection 10. Beyond the integration with Collection
10, other applications produced by the initiative and derived from the water dataset will be
publicly available on a website to improve management and use of water resources in
Brazil.

This document presents an overview of the initiative with a focus on the general
description of the methodology specifically used to produce the annual water surface data.

1.2 Overview

The MapBiomas Water initiative comes up from a previous study conducted by Imazon and
WWE-Brazil conducted in the Brazilian Amazon biome, and perfected to the Alto Paraguay
Basin, in the Chaco biome, recently published (Souza et al. 2019). This study showed the
possibility of improving the capacity of the MapBiomas Initiative to detect and monitor the
surface water dynamics in Brazilian biomes, which corresponds to 12% of the planet’s
freshwater reserves, making up 53% of South America’s water resources.

From this background, the MapBiomas Water Working Group expanded the same approach
and methodology to all the Brazilian territory. The methodology to map and monitor
surface water is based on sub-pixel classification of Landsat 5, 7, 8 and 9 and spatial analysis
of surface water bodies to identify anthropogenic and potential climate change impacts.

All data processing was performed within Google Earth Engine to reconstruct a monthly
time-series of changes in surface water dynamics in Brazil between 1985 and 2024.
Moreover, all the water bodies mapped were classified into natural and anthropic classes.
All the main results related to water surface mapping, transitions and temporal tendencies
were uploaded to an interactive dashboard for end-users of the surface water dataset.

After the launching of this platform the initiative plans to train end-users, including
academia, private sector and government. Reliable information on water availability is an
essential tool for decision-makers, helping to prioritize actions to protect and restore and
sustainably manage the use of water and freshwater ecosystems.

1.3 Identification of region of interest

The mapping of surface water covers all Brazilian biomes.

1.4 Key Science and Applications

A reliable dataset on water surface dynamics is crucial to improve management and the
sound use of water resources. High-quality map-based decisions combined with capacity



building at the national level could lead to necessary changes towards sustainable
development.

The data and information on water surface mapping can support, among others: integrated
territorial planning, monitoring of the Sustainable Development Goals, water stewardship
initiatives, monitoring water concessions/small dams, freshwater ecosystem quality
assessments, climate change assessment.

2 Overview and Background Information

2.1 Context and Key Informations

Over the last decades human activities have severely altered the conditions of freshwater
ecosystems. Drastic changes in land use and land cover, construction of hydroelectric dams,
pollution, and overuse of water resources for the production of goods and services have
altered water quality and availability worldwide. Recent evidence shows that freshwater
species have extinction rates twice as high as terrestrial ones. Moreover, extreme droughts
and flooding events related to climate change, have augmented the pressure on water
reservoirs and aquatic ecosystems.

This scenario tends to get even worse, given the increasing global population and the
growth of markets, and unless integrated water management strategies are developed it
will be impossible to achieve global sustainable development goals. In this perspective,
continuously and historically assessing changes in water surface dynamics on continental
scales is one of the major challenges in making decisions about this precious resource
(Oliveira & Souza, 2019).

These same challenges apply to Brazil’s context: a country with the highest per capita
proportion of water on the planet, but with uneven water quality and distribution. It
implies the need for specific decision making considering the different regional
characteristics and the interconnected and cumulative effects of water use. This will only be
possible through detailed and consistent data and information on water surface dynamics.

The novel surface water mapping methodology adopted by the MapBiomas Water initiative
has previously allowed the identification and quantification of the reduction of freshwater
surface in the Amazon biome, especially in wetlands (Souza et al. 2019). These results have
been corroborated by another study from NASA-JPL pointing out that the atmospheric
water vapor in the Amazon Basin is reducing as well.

2.2 Historical Perspective: Existent Maps and Mapping Initiatives

The use of satellite data revolutionized the human capacity to map inland surface water and
its dynamics. More recently, the combination of free access to Landsat data with cloud
computing capabilities allowed the launch of a multi-decadal global surface water dataset -
the Global Surface Water (GSW) (Donchyts et al. 2016, Pekel et al. 2016). This water surface
mapping initiative gives information on the extent and dynamics of surface water all over
the Earth surface, based on a 30-year analysis of Landsat images at the pixel level, with
several scientific and management applications. However, direct use of GWSD at a
country-level remains challenging for several reasons including: some methodological



constraints in detecting water in floodplains, wetlands and small water bodies, lack of a
rigorous validation assessment at the country level, and lack of near real-time information.

The MapBiomas Water seeks to overcome some of these limitations adopting the same
general approach of combining Landsat data with cloud computing capabilities, but adding
some methodological innovations to improve surface water detection and mapping.
Particularly the initiative adopts a Surface Water Subpixel Classifier (SWSC), previously
applied to the Brazilian Amazon biome (Souza et al. 2019). In the next sections, details of
this methodology are presented.

3 Algorithm Descriptions, Assumptions, and Approaches

3.1 Algorithm description

The combination of the Landsat Data Archive with the cloud computing facilities provided
by Google Earth Engine allowed the MapBiomes Water initiative to produce the first
Brazilian Surface Water Dataset (BSWD). Figure 1 shows the main methodological steps
encompassing a Surface Water Subpixel Classifier (SWSC), decision trees, and post-
classification procedures to generate annual and monthly surface water datasets.

SMA Calloction

1
. - Q) (e Q] et
i o -
Gain : \j/{i’ 7 . e
3 @ Loss .
@ Persistent A it
. Sporadic " ) &

Viater Body ey
v +. o
;

, @ Natural water s -
4 18%
o o Anthropic dams g ;
« i“ 76% . Hydro power
N plants )
- @ wining water il Uruguayd

O
| g og A

E SANEAMENTO BASICO

3.1.1 Landsat dataset

The project used the Landsat Data Archive (LDA) available in the Google Earth Engine
platform. It includes Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
the Operational Land Imager (OLI) Landsat sensors, on board Landsat 5, Landsat 7 and
Landsat 8, respectively. With a pixel spatial resolution of 30 m, we used the orthorectified
Landsat surface reflectance Collection 2 Tier 1. All Landsat path-row scenes covering Brazil
(n =381) during 1985 and 2024 were used and their metadata filtered to select the scenes
with cloud cover < 70%.



3.1.2 Spectral Mixture Analysis

The Spectral Mixture Analysis (SMA) allows for the estimation of pixel fractional
composition of pure pixels (i.e., endmembers) of green vegetation (GV),
non-photosynthetic vegetation (NPV), soil, cloud and shade. The sub-pixel information
obtained with SMA is useful to characterize mixed surface water with GV and soil
overcoming the limitation of whole-pixel classifiers to map wetlands, floodplains, narrow
streams and small waterbodies. In this SMA model, a generic Landsat endmember library is
used to calculate the percentage GV, soil, NPV, and cloud in each pixel. The SMA model is
based on Earth Engine's spectral unmixing algorithm. We used photometric shade (i.e., flat
zero reflectance in all bands) and calculated the shade fraction by subtracting the sum of all
endmember fractions from 1.

3.1.3 Surface water Sub-pixel Classifier (SWSC)

The original Sub-pixel Surface Water Classifier (SWSC) algorithm uses three hierarchical
binary decision (i.e., True, False) rules based on fractional information of Shade, GV, Sail,
and Cloud. First, because water absorbs much of the electromagnetic radiation in the
visible, near-infrared, and shortwave infrared Landsat bands, SWSC uses Shade fraction
image > 65 percent to classify the majority of the Landsat pixels as surface water. Second,
GV and Soil fractions combined (i.e., < 10%) to account for mixed surface water with
vegetation and soil. The mixed surface water occurs along the water bodies' edges, on
narrow streams, and floodplain and wetland ecosystems. Finally, residual Cloud fraction
(i.e., < 25%) is included to detect surface water with a high sediment load. This residual
Cloud fraction is due to the Cloud and Soil endmember's spectral ambiguity. In fact, the
residual Cloud fraction model is due to the spectral response of the Soil endmember in
Cloud free pixels.

An empirical assessment of surface water mapped with the hierarchical binary decision
rules described above revealed that the threshold still excludes surface water (Figure 1).
Because of that, we defined transition rules along the fractional thresholds using a set of
linear functions. As a result, the original SWSC binary decision was transformed into three
independent probability functions of a Landsat pixel to be classified as surface water. We
then calculated the average probability to obtain a continuous surface water probability
map with values ranging from 0 to 1 (Figure 1). Based on these probabilities we classified
the Landsat pixels to produce monthly surface water layers.
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Figure 2. Surface Water Sub-pixel Classifier binary rules. The left example shows an example of
undetected surface water for a pixel with fraction values indicated by the red points (the value of
gv + soil is above the threshold > 10 to be classified as water). The right example applies a linear
probability function to the variable and the mean value allows to correctly classify the pixel (red
point) as surface water.

3.2 Monthly Surface Water Maps

To produce the monthly surface water maps we first produced maximum monthly
probability maps, picking the pixels with maximum SWSC probability values from the
available Landsat scenes within each month. Then, all pixels with mean probabilities > 0.67
were classified as surface water, resulting in monthly surface water time-series during 1985
and 2024 for all Brazil.

We complemented these monthly maps with a procedure to restore false negatives and
other to remove false positives, based on temporal metrics (Figure 2). First, we calculated
the mean monthly surface water probability for the whole year (i.e., intra-annual mean)
and the decadal mean of every month. Then a gap filling was applied to reclassify as water
those pixels that were eventually covered by clouds or within areas where no Landsat
scenes existed for a given month, using a combination of two rules: mean probability within
the year >0.6 and the decadal mean of the correspondent month >0.6. At last, the presence
of cloud shadows or other dark objects in the Landsat scene can also produce false-positive
surface water classifications. Then, a removal filter was applied to reclassify as no water
those pixels with a mean monthly probability <0.35.
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Figure 3. a: Monthly Landsat mosaic; b: Monthly SWSC mean probability; c: Annual Monthly mean
SWSC probability; d: Decadal monthly mean SWSC probability; e: Month Surface water
classification; f: Total decadal surface water ; g: Area likely to be surface water based on c and d
thresholds; h: Final surface water map for the month, with inclusions and removals.

3.3 Annual Surface Water Maps

Two annual surface water maps versions were produced for each year based on thresholds
corresponding to the number of months that a pixel was classified as water. The first one
considers a frequency > 6 months and the second one, a frequency > 8 months to set a pixel
in the annual surface water map. The surface water classifications include both permanent
and temporary water surfaces. The definition of the threshold was biome based. In the
Pampa biome, the absence of a dry season justified the selection of a more restrictive
threshold to exclude all temporary waters from the annual surface water representation. In
the other biomes, the existence of a dry and a wet season justifies a more flexible threshold
to encompass all permanent water bodies that are naturally more dynamic.

3.4 Post-classification biomes

We perform a post-classification on the annual and monthly maps according to the needs of
each biome. The biome specialist was responsible for indicating the necessary adjustments
and carrying out the implementation. Below, we present the needs and adjustments made
for each biome:

Amazon:

In 2023 and 2024, the Amazon suffered a severe drought, especially during the last four
months of the year. To guarantee the detection of this event and avoid errors, we

implemented the methodology for the Amazon biome in the year 2023 e 2024 to detect
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drought using the Sentinel-1 and Sentinel-2 sensors. We used images from these sensors to
detect the surface water in the years 2022 and 2023/2024. Our analysis compared monthly
average mosaics of these two types of satellite data, eventually identifying areas where
there was a loss or gain of surface water in 2023/2024 about the last year. We mapped
surface water with Sentinel-2 at the subpixel scale, using spectral mixture analysis (SMA)
(Souza Jr. et al., 2005) to estimate the proportion, within a pixel, of the purest spectral
responses, that is, the " endmembers" of Green Vegetation, Non-Photosynthetic Vegetation
(NPV), Soil, Shade and Cloud.

Due to cloud blocking of Sentinel-2 optical data, we also use Sentinel-1 images to obtain
ground observations and detect water surface changes in cloudy conditions. We process the
Sentinel-1 VV (VV) polarization bands during the same period analyzed with Sentinel-2, i.e.
2022 (t0) and 2023/2024 (t1), using monthly mosaics and subsequently performing change
detection. Areas with changes in Sentinel-1 < -5 dB and Sentinel-2 < -0.3 were defined as
surface water loss, while the threshold for surface water gain was in Sentinel-1 =2 8 dB and
non-Sentinel-2 2 0.67. Based on visual interpretation, we eliminated false detections in the
study of the Amazon Biome due to the concentration of sediments that reduced the signals
in Sentinel-1 and Sentinel-2. Figure 1 summarizes the methodological steps described
above.
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Figure 4. Remote sensing workflow to detect surface water change between 2022 and 2023/2024
(i.e., loss and gain) using Sentinel-1 and Sentinel-2 satellite imagery and examples of surface water
change detected with both sensors

Pantanal:

The Pantanal is one of the most extensive continuous wetland areas in the world,
characterized by a vast alluvial plain subject to large seasonal floods due to a flood pulse,
with pronounced periods of flood and drought. Monitoring this flood pulse is essential to
understanding how land use and cover change over time. To improve the mapping of
seasonally flooded areas this collection includes an adjustment in the data methodology
referring to the Pantanal biome.



Monthly mapping of water surface and flooded fields used supervised classification with the
Random Forest algorithm, as described in the ATBD of the Pantanal biome. This classification
utilizes the maximum number of available images, creating monthly mosaics for each
satellite and data from different Landsat satellites. Some monthly mosaics from Landsat
contain pixels with no data due to the lack of images or the cloud mask filter's effect. To
overcome this, we developed a gap-filling filter for the classified data. The filter considered
the local precipitation pattern to fill each no-data pixel with the classification from the
closest and driest available month. We think this a conservative strategy to avoid
overestimating the mapping of flooded areas in the Pantanal during periods without images,
as the rainiest months are also the cloudiest.

To contribute to the details of the data provided by MapBiomas Water, we selected the
monthly water surface data generated by this approach with supervised classification, as well
as data relating to the 'flooded field' or ‘wetland’ area that aligns with that mapped by
MapBiomas Water, based on a spectral mixture model.

With this monthly data, it was possible to generate annual frequency data. To integrate the
annual maps, we consider pixels classified for at least six months of the year. Intra-annual
flooding with a frequency of less than six months is available in the “Intermittent water”
data.

Cerrado:

The Cerrado is one of the biomes with the highest population density and concentrates a
significant portion of Brazil's agricultural commodity production, especially grains. The biome
hosts large artificial water reservoirs, mainly for electricity generation, urban supply, and
crop irrigation. Considering this context, accurate temporal mapping of reservoirs is essential
for understanding the hydrological dynamics in the biome and mitigation of the impact of
climate change on human populations.

In evaluating the data produced for the year 2023 and 2024, we identified potential
omissions in arms of large reservoirs, especially those subject to intense intra-annual
seasonality or subject to water surface coverage only in atypically rainy years. We identified
that part of the omission originates from the spatiotemporal filter to exclude false positives.
That happens because these areas are covered by grassy-herbaceous vegetation for part of
the year, having a spectral signature of organic matter and undergoing accelerated
eutrophication during the rainy months. We have revised the false positive filter, recognizing
that some areas may represent water surfaces.
We adopt the methodology to cross-check the false positive data each year. After
cross-checking, we selected only false-positive pixels spatially connected with the water
surface mapping from the same year. On these pixels, we estimate membership using the
same methodology used for water surface mapping by the original. Finally, we apply the
following criteria to retain “false positive” pixels and add them as water surfaces in the final
map:

i) be spatially connected (queen’s case) to the water surface in the same year

ii) have membership (probability) greater than 50%

10



Atlantic Forest

In the assessment carried out for the Atlantic Forest biome, we observed mining
commissions, urban areas, mangrove areas, and irrigated crops. To resolve this, we apply
MapBiomas masks related to these classes to avoid commissions. To prevent the mining
mask from omitting bodies of water in this environment, we adjusted the algorithm by
adding an “and” logic where the mining mask only works where annual membership is less
than or equal to 0,5.

3.5 Water bodies classification

The surface water mapping was used in a classification of water bodies scheme with the
classes: 1. Natural, 2. Reservoirs, 3. Hydroelectrics, 4. Mining water. We also included a fifth
class of “False positives”, as a by-product of the classification to remove some cases of
unwanted false positives that remained in the collections of monthly and annual water
surface.

The classification of water bodies included the following steps:

1. Vector delimitation of objects
2. Assigning properties to objects

3. Classification of objects based on training samples
4. Temporal filter

The vector delimitation of objects was called annual vectorization once it corresponds to
the process of converting the monthly frequency maps of the water surface (raster data) for
each year into regular polygons (vector data) within the spatial delimitation of the water
bodies.

This procedure was performed with a segmentation tool, in which a particular water body
may have been converted into one or more polygons. The snic function available on Google
Earth Engine was used to generate small and relatively regular segments. Figure 4 shows
some examples of the segmentation based on monthly frequency data for a given year.

:-..”-’I N = ¥

Figure 5. Examples of the segmentation process converting raster data (monthly frequency within
each year) into a fishnet of regular vectors.
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After generating the objects for each year, a feature dataset with new properties was
assigned to each one of these objects for later use in the classification. These properties
encompassed information related to the object morphology, geomorphology and
qualitative information from other studies on water bodies classification and land cover and
land use mapping. The following variables were associated to each object: area, perimeter,
area/perimeter ratio, compactness, roundness, degree of elongation, Laenge- Breite ratio,
convexity, maximum extension, number of neighbors, number of neighbors within a 50m
buffer, ANA classification — anthropic, ANA classification — hydroelectric, MapBiomas
coverage and use class (urban, mining, forest, non-forest class, pasture), maximum SRTM
value, mean of total frequency.

The classification of water bodies was performed using the Random Forest algorithm. The
training samples were collected in the different biomes for each of the five classes. The
samples were collected using a set of grids previously drawn from each biome, covering
different years of the time series.

After the classification, the results were submitted to a post classification routine by
applying a temporal filter. The time filter logic was to remove improbable transitions
between classes of the same segment along the time series.

At last, all the polygons classified as false positives within each year were reconverted to
raster format and used to filter the annual and monthly water surface data set, removing
the remaining false positives.

Additionally, we incorporate Aquaculture as another class of water bodies. We used the
historical MapBiomas maps produced by the coastal zone theme. The method for
generating the aquaculture class is detailed in
https://brasil.mapbiomas.org/download-dos-atbds-com-metodo-detalhado/ (Coastal Zone
Appendix)

4 Validation Strategies

The accuracy analysis of annual water classification data was conducted using MapBiomas
Use and Coverage data collected by LAPIG/UFG as a reference (also on an annual scale). The
class “River, Lake or Ocean” was considered as a water surface. The sample stratification
method based on annual water frequency classes and distance from the next body of water
was applied to reduce the sampling error of the producer's accuracy. The water frequency
and distance classes used were:

- Permanent: appears more than 90% on the annual map and at least one time in the
last three years;

- Intermittent: appears between 50% and 89% on the annual map;

- Infrequent: appears between 10% and 49% on the annual map;

- Soil: less than 10% frequency in the time series (1985 - 2024);

- 250 meters away from the nearest water body;

- 500 meters away from the nearest water body;

- 5,000 meters away from the nearest water body.

The total number of samples per biome, obtained by the sample design described
above, is represented in Table 1, and the distribution of samples per stratum is in Table 2.

12
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Amazon 35.260
Caatinga 9.956
Cerrado 20.851
Atlantic Forest 14.478
Pampa 2.568
Pantanal 2.002
Total 85.115

Table 1 - Number of samples (points) per biome.

permanent water 86.684 3.987 7.039 15.880 17.287 3.062 133.939

intermittent water 21771 4,123 5527 6.044 1.080 5.660 44.605

infrequent water 31.614 5.743 8.888 11.329 2.835 12.009 72.416

soil 18.437 3.475 5.966 15.836 2.135 10.020 55.868

250m meters away from nearest water body | 262.046 | 81.902 | 163.883 238.056 36.116 43,191 825.194

500m meters away from nearest water body | 243.169 | 120.022 | 241.635 251.339 42.526 26.578 925.269
5km meters away from nearest water body | 2.056.316 | 584.423 | 1.461.881 567.817 92.008 50.116 4.812.560
5,000 meters away from nearest water body | 1.457.222 | 59.192 90.103 1.129 68 412 1.608.125
Total 4.177.257 | 862.866 | 1.985.322| 1.107.430 194.054 | 151.047 8.477.977

Table 2 - Area (km?) of each stratum in each biome.

The accuracy of the user and producer (Figure 3) is generally above 75% for the
annual mapping of the water surface and can reach up to 90% in some years. The
exceptions were the Caatinga since 2010, the Atlantic Forest at the beginning of the time
series, and mostly Pantanal, in which the user accuracy was below 50% for all the series.
These results are preliminary because the data reference used in this analysis was obtained
for mapping the water surface. Divergences can exist, for example, between the dates used
to generate reference data (based on the Landsat images) and the water surface annual

integrated result, which is not based on a single date of the year. There is a great

interannual irregularity in the accuracy of practically every biome, also pointing to seasonal

effects in the water surface that were not caught by the reference data. So, the results must
be considered as exploratory and preliminary.

Figure 6. Examples User and producer of “water” class accuracy per biome and per year.
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5 Map Collections and Analysis

The main results of collection 1 are publicly available on the web platform:
https://plataforma.brasil.mapbiomas.org/water/water_water_surface _including four data

layers: surface water, transitions, trends and water bodies classification (beta).

5.1 Surface Water Area

This layer corresponds to the annual surface water data. The data presentation includes a
mapped water surface considering different temporal ranges within the interval 1985-
2024, with the corresponding relative frequency. Different spatial limits are also available:
biomes, hydrographic regions, municipalities, states of the federation, geographical regions,
protected areas and watersheds. According to the temporal and spatial selection made by
the user, the map and the area statistics are updated and presented in graphs (Figure 6).
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Figure 7. Example of data visualization (map and graph) of the layer Surface Water in the Water
MapBiomas platform.

5.2 Surface Water Transitions

This layer shows where the water surface disappeared, appeared, and remained permanent or
sporadic along the 36 years. Using the total number of surface water classifications per pixel
over the entire annual time-series (i.e., 36 years) it was possible to identify such areas. An RGB
color composite was built to facilitate the visual identification of these categories. (Figure 7).
First, we assigned the total number of years classified as surface water to characterize
persistence (blue). Second, we selected the number of years from the beginning of the
time-series until the first classification was surface water to characterize appearance (green).
Finally, we chose the number of years from the last surface water observation to the end of
the time-series, indicating the disappearance of surface water (red). Accordingly, those
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permanent water bodies appear predominantly blue, temporary surface water would appear
black if they were sporadically reoccurring, lost surface water in red and new ones in green
(Figure 8).

presence [%]

beginning to first [%] last to end [%)
Figure 8. RGB surface water dynamics. Blue colors indicate persistence, as the total number of years
classified as surface water; green appearance (the number of years from the beginning of the time-
series until the first classification); and red disappearance. Black and dark colors indicate sporadic or
non-permanent surface water.

Figure 9. Example of surface water transitions for the Vitéria do Xingu municipality. The green in the
map indicates the surface water that appeared in the last years with the construction of the Belo
Monte dam. A graph (red and blue) indicates the transition between the selected years, according
to the mapped water surface area.

5.3 Surface Water Trends

The analysis of temporal trends in surface water was performed using the monthly surface
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water database.

Fitting a harmonic model

To describe and test changes in seasonal variation patterns, concerning changes in phase,
amplitude, and variation rate, searching for seasonal pattern and possible trends referring
to the monthly water surface mapping data for the 1985-2024 time series, we used the
harmonic model described by Shumway & Stoffer(2006) (Figure 10).

Let x1,x2, ,xnbe a set of n data where xtrepresents the value of the variable area in the
time series of water bodies, for all t < [1,n] €R, in data n = 432 (months). We calculate the
harmonic value of each element of the series from the following equation.

x1= Bo+ Ba1* t + B2 * cos(21T * t) + B3 * sin(217* t)

The estimated coefficients Bo, B1, B2, B3 for the equation were calculated using the ordinary
least squares method. (Shumway & Stoffer, 2006).
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Figure 10. Example of fitting a harmonic series to the results of mapped monthly water surface data.
The blue line is the mapped water surface area, the red line indicates the harmonic fitted model.

Differences between the harmonic model and observed data

To detect increased or decreased behavior along the data time series, we calculated
the difference between the harmonic model and the mapped water surface area. This
analysis aims to point out more clearly which monthly periods showed more intense
departures according to the expected by the model (Figure 11).
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Figure 11. Example of differences between the fitted model and observed data. Green points and
bars indicate increased values, red points and bars indicate decreased values in relation to the
expected by the harmonic model.

Temporal trends
We searched for trends of increase, decrease or maintenance in the mapped surface

water along the 1985-2024 time series. The test was performed using the Mann Kendall
Seasonal Test (MK test), which is used to analyze data collected over time for increasing or
decreasing trends with monotonic behavior in Y values (Figure 12). It is non- parametric, so
the data do not need to meet the assumptions of normality, which analyzes data for
monotonic trends in seasonal data (Hirsch et al., 1982; Hirsch et al., 1984; Gilbert, 1987;
Helsel & Hirsch, 1995, Morell & Fried, 2009).

To perform the test on the time series, the values are considered an ordered time
series. Each value in the series is compared to the rest of the subsequent elements in the
series. Kendall's statistic is considered as 0, when S = 0. If the value of S for the whole set of
elements is greater than 0, it means that the trend of the series data is decreasing.
Otherwise, it means that the series is increasing.

The following steps were considered to calculate the Mann-Kendall statistics:

Let x1,x2,....,xn be a set of n data where xjrepresents the value of the variable at time
jforallj<[1,n] €ER, then the is calculated as:

S=X j=k+1 sign(x; — x)
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the function is:

sign(x; —x,) =1 sex; —x,>0
sign(x;—x,) =1 sex; —x,=0
sign(x; — x,) = —1 sex; —x, <0

Each value-added to S means an increase or a decrease of the value concerning the
subsequent one in the series.

In the time series of area data to collect maps of water bodies, it was necessary to
consider the Kendall calculation for a series with seasonal behavior. The series of areas of
water bodies corresponds to a time series of 12 months over the 36 years. Given this
structure for the calculation of the S statistic, the data were divided into 12 subsets, where
the first subset corresponds to all values corresponding to the month of January in the
series, the second to all values corresponding to February in the series, and so on, until
December. Then the value of S will be the sum of all S;where J = [1.12] (Helsel & Hirsch,
1995).

Kendall's value for each month is calculated as described above.
'w.;ff;v;' BIOMAS Ir para o MAPBIOMAS Metodologia

o | -] #

Y

Uruguay

Figure 12. Example of trend calculation results for Brazil using Mann Kendall's seasonal test. Data in
red indicate a decrease, data in green an increase and data in white, stability. Only data with
significant values are presented.
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5.4 Water bodies classification (BETA)

This layer shows the results of the classification of water bodies, including four classes:

1. Natural;

2. Reservoirs;

3. Hydroelectrics;
4. Mining water;
5. Aquaculture.

The classification is annual, so it is possible to detect the appearance of anthropic water
bodies along the time series (1985-2024). The results of the classification are promising, but
still require some adjustment. This is because we consider this layer as a beta version. The
available statistics include the area of water surface in each one of the water bodies class
mapped for the year of interest and considering the spatial unit selected in the interface
and a graph with the areas along all the time series.

o

. Natural

Resarvoirs

. Hydroalectric
. Miring

. Aguaculture

Hectares

Figure 13. Example of water bodies classification for the S3o Francisco hydrographic region. The
map shows hydroelectrics interrupting the natural water flux of the river in three different sectors.
The graph shows the area mapped as surface water among the different classes of water bodies.
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6 Practical Considerations

Once, this is the first version of the product, it has to be considered as a starting point for
future improvements and corrections for any imperfections. All data are publicly available
and it is expected that multiple users can point out the hits, the need for corrections and
suggestions so that the product can be improved in future versions.

The users of the database have to take into account that the use and applications of the
guantitative data presented must always be confronted with the accuracy results in order to
understand the degree of existing uncertainty in the data, and decide if it is acceptable for
the intended use.

7 Concluding Remarks and Perspectives

This collection represents an important advance in the mapping of the water surface in
Brazil and for the understanding of its temporal dynamics. The combination of data on
temporal dynamics with the classification of water bodies is crucial information to split the
natural patterns from patterns resulting from human action and to better understand their
consequences.
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