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Executive Summary 

MapBiomas initiative was formed in 2015 by universities, NGOs, and tech 
companies to develop a fast, reliable, collaborative, and low-cost method to produce 
time series of annual maps of land cover and land use (LCLU) in Brazil. The network is 
organized by biomes (Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and 
Pantanal) and cross-cutting themes (Pasture, Agriculture, Coastal Zone, Mining, and 
Urban Area) and all derived products and scripts are publicly and freely available to all. 
Since then, MapBiomas has produced nine collections of LCLU annual digital maps from 
1985 to 2023 using Landsat satellite images with 30 meters spatial resolution, 
progressively improving the methods, increasing the number of mapped classes and 
enhancing the mapping accuracy.  

Aiming to provide data with higher spatial resolution, in 2023 MapBiomas 
launched the first collection in beta version of the land use and land cover annual maps 
of Brazil at 10 meters resolution using Sentinel-2 satellite images covering the period 
from 2016 to 2022 (period of availability of Sentinel), named as the initiative 
MapBiomas 10 m. This new dataset allowed the inclusion of more detailed information 
in the mapping, for example, in rural properties, urban areas infrastructures and 
riparian forest in Permanent Preservation Areas (APP) along rivers and springs. 

The second collection (beta), launched in 2025, covered the period of 2016 to 
2023 and 21 LCLU classes, including three new classes: floodable forest in the Amazon, 
aquaculture and apicum (hypersaline tidal flat) in the Coastal Zone. This collection 
applied similar methods and the same legend of the land cover and land use classes of 
the MapBiomas Collection 9 (up to the third level of the legend). Seeking to continually 
improve methods and update the collection, maps from 2016 to 2022 were 
reprocessed and the year 2023 was mapped with the same spatial resolution, which 
resulted in the MapBiomas 10 m Collection 2 (beta). The shorter time series (from 
2016 to 2023) decreased the temporal consistency of the Sentinel-2 mapping 
compared to the longer time series of Landsat mapping. 

This Algorithm Theoretical Basis Document (ATBD) aims to provide the 
methodological steps of the MapBiomas 10 m Collection 2 (beta). All MapBiomas 10 m’ 
maps and datasets are freely available on the project platform 
(https://plataforma.brasil.mapbiomas.org/cobertura_10m) and to download 
(https://brasil.mapbiomas.org/colecoes-mapbiomas/ ), as well as all computational 
algorithms used in the MapBiomas classifications, which are available on Github 
(https://github.com/mapbiomas).  

3 

 

https://plataforma.brasil.mapbiomas.org/cobertura_10m
https://brasil.mapbiomas.org/colecoes-mapbiomas/
https://github.com/mapbiomas


​  

1. Introduction  

1.1. Scope and content of the document 

This document describes the theoretical basis, objectives, and methods applied 

to produce annual maps of land cover and land use (LCLU) in Brazil from 2016 to 2023 

of the MapBiomas 10 m Collection 2 (beta). It covers the classification methods, the 

image processing architecture, and the approach to integrating the biomes and 

cross-cutting theme maps. In addition, the document presents a historical context and 

background information, a general description of the satellite imagery datasets, and 

feature inputs.  

1.2. Overview 

The MapBiomas project was launched in 2015, aiming at contributing towards 
the understanding of LCLU dynamics in Brazil. The LCLU annual maps produced in this 
project were initially based on the Landsat series archive available in the Google Earth 
Engine platform, encompassing the years from 1985 to the present. Since then, the 
MapBiomas published nine LCLU mapping collections in Brazil, launching a new 30-m 
collection each year.  

The MapBiomas collections aim to develop a fast, reliable, collaborative, and 
low-cost method to process large-scale datasets and generate historical time series of 
LCLU annual maps. All data, classification maps, codes, statistics, and further analyses 
are openly available through the MapBiomas platform 
(https://plataforma.brasil.mapbiomas.org/). All these are possible thanks to: i) Google 
Earth Engine platform, which provides access to data, image processing, standard 
algorithms, and the cloud computing facility; ii) freely available Landsat and Sentinel 
time-series data; iii) MapBiomas collaborative network of organizations and experts 
that share knowledge and mapping tools; and iv) visionary funding agencies that 
support the project (Souza Jr et al., 2020). 

In 2023, MapBiomas launched the beta version of the first land use and land 
cover annual maps of Brazil at 10-meter resolution, using Sentinel-2 imagery for the 
period from 2016 to 2022. In 2025, the second collection extended the mapping to 
2023, followed the same legend as MapBiomas Collection 9 at level 3, covering 21 LCLU 
classes, with three new classes: floodable forest in the Amazon, aquaculture, and 
apicum (hypersaline tidal flat) in the Coastal Zone. The products of the MapBiomas 10 
m Collection 2 (beta) were the following: 

• Biome maps (Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa, and 
Pantanal) and cross-cutting theme maps (Pasture, Agriculture, Coastal Zone, 
Mining, and Urban Area); 

• Pre-Processed feature mosaics generated from Sentinel-2 data. 
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• LCLU statistics and spatial analysis with political territories (e.g. biomes, 
states, municipalities), watersheds at different levels, protected areas (e.g. 
conservation units and indigenous territories), and other land tenure categories 
(e.g. rural setlements, quilombola lands). 

Besides these LCLU mappings, the MapBiomas network released MapBiomas 
Water and Fire collections featuring annual and monthly maps of Brazil's water surface 
and fire scars from 1985 to the present, respectively. Annual maps of topsoil (0 - 30 cm) 
organic carbon stocks and soil texture mapping were launched as part of the 
MapBiomas Soil beta collection, along with the open soil research data repository 
SoilData. ince MapBiomas operates collaboratively with open data and methods, the 
network has expanded to other countries, engaging local institutions in mapping across 
all South American countries and Indonesia 
(https://brasil.mapbiomas.org/iniciativas-mapbiomas/). 

1.3. Region of Interest  

MapBiomas was created to produce LCLU annual maps for the entire Brazilian 

territory, covering all the six official biomes of the country: Amazon, Atlantic Forest, 

Caatinga, Cerrado, Pampa, and Pantanal (Figure 1). A biome is a geographic region 

defined based on vegetation types associated with geomorphological and climatic 

conditions. Our maps are developed per biome and then integrated into a single map 

of Brazil’s LCLU classes in a post-processing step. The official Brazilian biomes map 

(1:250,000) developed by IBGE (2019) has been used.  Classifying LCLU classes at the 

biome level helps to better discriminate specific LCLU classes and landscape patterns 

across the country (Table 1). In Brazil, the mapping approach was also divided into 

cross-cutting themes to improve the classification accuracy and quality: Agriculture, 

Pasture, Coastal Zone, Mining, and Urban Area.   
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Figure 1. Brazilian biomes used in the MapBiomas project to generate the Collection 2 
(beta) of 10 m land cover and land use mapping products (source: IBGE, 2019). 
 

 
Table 1. Land cover and land use characteristics of the Brazilian biomes. 

Biome Area (km2) 

(Country %) 

Land Cover Predominant Land Use 

Amazon 4,196,943 
(49.29%) 

Evergreen forest, with enclaves of 
savanna, natural grassland, and 
extensive wetlands and surface 
water, with almost 20% of the 
forest area of the biome cleared. 

Cattle ranching, agriculture, 
mining, logging and 
non-timber forestry 
production. 
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Atlantic Forest 1,110,182 
(13.04%) 

Isolated forest fragments 
(Morellato and Haddad, 2000), 
mostly old secondary growth, 
surrounded by croplands, pasture, 
forest plantation, and urban area. 

Agriculture, cattle ranching, 
urban, forest plantation, 
artificial water reservoir. 

Caatinga 844,453 
(9.92%) 

Woody and deciduous 
physiognomies, with at least 50% 
of the original converted (de 
Oliveira et al., 2012). 

Agriculture, cattle ranching, 
smallholder livestock 
production, urbanization. 

Cerrado 2,036,448 
(23.92%) 

Mosaic of savanna, grassland, and 
forest, 50% of the native 
vegetation cover has already been 
converted (PPCerrado/INPE). 

Agriculture, cattle ranching. 

Pampa 176,496 
(2.07%) 

Natural grassland, with scattered 
shrub and trees, rock outcrop 
formations (Roesch et al., 2009). 

Agriculture (rice, soy, 
perennial crops), livestock 
production (in natural 
grasslands), forest 
plantation, and urbanization. 

Pantanal 150,355 
(1.76%)  

Forest, savanna, grassland and 
wetland. 

Agriculture and cattle 
ranching. 

  

1.4. Key Science Applications 
MapBiomas was initially designed to address knowledge gaps in Brazil's 

greenhouse gas emission estimates from the land-use change sector. However, its 

annual time-series of land cover and land use (LCLU) maps also enable various scientific 

applications. In particular, the 10-meter resolution mapping enhances other detailed 

analyses, such as those focused on rural properties and urban areas. For example, 

higher-resolution imagery allows for more precise classification of certain land cover 

types, such as riparian forests in Permanent Preservation Areas (APP) along rivers and 

springs, among other applications: 

●​ Mapping and quantifying LCLU transitions 

●​ Quantification gross and net forest cover loss and gain 

●​ Monitoring water resources and their interaction with LCLU classes 

●​ Monitoring agriculture and pasture expansion 

●​ Monitoring natural disasters 

●​ Tracking infrastructure expansion and urbanization 

●​ Identifying desertification processes 

●​ Supporting regional planning 

●​ Managing protected areas 

●​ Modeling land-use changes 

●​ Modeling infectious disease risks 
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●​ Modeling climate change 

2. Overview and Background Information 

2.1. Context and Key Information 

This section addresses complementary contextual and critical information 
relevant to understand the MapBiomas products and methods used in the map 
collections. 

2.1.1. MapBiomas Network 

MapBiomas is a collaborative network of NGOs, universities, and technology 

startups committed to mapping land cover and land use changes across Brazil. Each 

organization plays specific or multiple roles, contributing to the project's overall 

development (a list of organizations can be found in Annex I). Each biome and 

cross-cutting theme (Agriculture, Pasture, Coastal Zone, Mining, and Urban Area) has a 

lead organization, as shown in the box below. 

Biome coordination: 

• Amazon – Institute of People and Environment of the Amazon (IMAZON). 

• Atlantic Forest – SOS Atlantic Forest Foundation and ArcPlan. 

• Caatinga – State University of Feira de Santana (UEFS) and Geodatin. 

• Cerrado – Amazon Environmental Research Institute (IPAM). 

• Pampa – Federal University of Rio Grande do Sul (UFRGS) and GeoKarten. 

• Pantanal – SOS Pantanal Institute and ArcPlan. 

Cross-cutting theme coordination: 

• Pasture – Federal University of Goias (LAPIG/UFG). 

• Agriculture and Forest Plantation  – Remap. 

• Coastal Zone and Mining – Solved and Vale Technological Institute (ITV). 

• Urban Area – University of São Paulo (USP - QUAPÁ-FAU and YBY), Federal 

University of Bahia (UFBA), and Federal University of São Carlos (UFSCar - NEEPC). 
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The geospatial tech company Ecostage is responsible for the dashboard and 

website / backend and frontend of MapBiomas. The tech-startup Ecode is responsible 

for integration, post-classification and statistical analysis. Google provides the cloud 

computing infrastructure that allows data processing and analysis through Google 

Earth Engine and storage through Google Cloud Storage. 

 

Since the beginning of MapBiomas, the funding for the MapBiomas 

implementation came from different funders the Skoll Foundation, Woods & Wayside 

International (WWI), Amazon Fund, Mulago Foundation, Climate and Land Use Alliance 

(CLUA), Alana Institute, Yield Giving, Ballmer Group, Valhalla Foundation, Sea Grape 

Foundation, Waverley Street Foundation, The Overbrook Foundation, The Patchwork 

Collective, Beja Institute, International Center for Tropical Agriculture (CIAT), 

Umbuzeiro Institute, Norwegian International Climate and Forest Initiative (NICFI), 

Climate and Society Institute (ICS), Quadrature Climate Foundation (QCF), Montepelier 

Foundation, Walmart Foundation (USA), Sequoia Climate Foundation, Good Energies 

Foundation, Gordon & Betty Moore Foundation, Global Wildlife Conservation (GWC), 

Wellspring philanthropic fund, OAK Foundation, Instituto Humanize, Arapyaú Institute 

Children’s Investment Fund Foundation (CIFF). 

 

Since MapBiomas is not an institution, the initiative received generous 

institutional management to operational and financing tasks from partners, including 

Arapyaú Institute, IAMAP and  Avina Foundation. 

 

The project also has an independent Scientific Advisory Committee (SAC) in 

MapBiomas Brazil, presently composed by: 

●​ Dr. Alexandre Camargo Coutinho (Embrapa) 

●​ Dr. Edson Eygi Sano (IBAMA) 

●​ Dr. Gerd Sparovek (University of São Paulo) 

●​ Dra. Leila Maria Garcia Fonseca (INPE) 

●​ Dra. Liana Oighenstein Anderson (CEMADEN) 

●​ Dra. Marina Hirota (Federal University of Santa Catarina) 

​ And also former members who contributed to the project’s development on 

previous collections: 

●​ Dr. Gilberto Camara Neto (INPE) 

●​ Dr. Joberto Veloso de Freitas (Federal University of Amazonas) 

●​ Dr. Matthew C. Hansen (Maryland University) 

●​ Dr. Mercedes Bustamante (University of Brasília) 

●​ Dr. Timothy Boucher (TNC) 

●​ Dr. Robert Gilmore Pontius Jr (Clark University) 
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2.1.2. Remote Sensing Data 

The imagery dataset used in the MapBiomas 10 m Collection 2 (beta) was 

obtained by the harmonized collection of Sentinel-2 sensor MultiSpectral Instrument 

(MSI) (https://sentiwiki.copernicus.eu/web/s2-mission), accessible via Google Earth 

Engine and produced by the European Spatial Agency (ESA). 

2.1.3. Google Earth Engine and MapBiomas Computer Applications 

MapBiomas data processing is based on Google technology, which includes 

image processing in cloud computing infrastructure, programming with Javascript and 

Python via Google Earth Engine, and data storage using Google Cloud Storage. Google 

defines Google Earth Engine as: “a platform for petabyte-scale scientific analysis and 

visualization of geospatial datasets, both for public benefit and for business and 

government users.” 

The MapBiomas project has developed the following computer applications 

based on Google Earth Engine: 

• Javascript codes - these scripts were written directly in the Google Earth Engine Code 

Editor. The classification, post-classification and map integration of MapBiomas 10 m 

Collection 2 (beta) were written in Javascript. 

• Python scripts - This code category was used to optimize image processing of large 

datasets in Google Earth Engine. In addition, the image mosaicking and statistical 

analysis were all performed in Google Earth Engine Python API. The python API also is 

used to train and predict deep learning models, as U-Net. 

• Plataforma.brasil.mapbiomas.org (dashboard). The web platform of the MapBiomas 

initiative presents LCLU annual maps of MapBiomas 10 m Collection 2 (beta), and its 

graphs and statistics. Besides the 10 m LCLU data 

(https://plataforma.brasil.mapbiomas.org/cobertura_10m), the MapBiomas dashboard 

presents other products/modules, such as Collection 9 (Landsat) LCLU, temporal 

analysis, deforestation, secondary vegetation, agriculture, infrastructure, pasture, fire, 

mining, soil, water, degradation, urban mappings. All maps, data, and methodological 

documents of the MapBiomas Collections are open and freely available to download, 

and more information about the MapBiomas initiatives are available in the website 

(http://mapbiomas.org/en).  
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3. General Methodological Description 

The general methodological steps of MapBiomas Brazil 10 m Collection 2 (beta) 

are presented in Figure 2. The first step was to generate annual Sentinel-2 mosaics 

comprising all images from each year to discriminate the LCLU classes across biomes 

and cross-cutting themes. The second step was to derive all feature space attributes 

from the Sentinel-2 bands to train one random forest classifier (feature space 

definition) for each year (Breiman, 2001). Then, training samples were yearly acquired 

in each biome and cross-cutting theme according to its information availability and 

statistical needs. The classification was carried out either using Random Forest, 

Gradient Tree Boosting or U-Net, depending on the biome or cross-cutting theme 

(Figure 2). In any case, the output is one LCLU map per year for the entire territory 

based on the training dataset of that year.  

Spatial-temporal filters were applied over the classified data for noise removal 

and temporal stabilization. Subsequently, the filtered LCLU maps of each biome and 

cross-cutting themes were hierarchically merged (integrated) based on a set of 

prevalence rules. A spatial filter was once again applied in the integrated LCLU maps to 

create the final 10 m Collection 2 (beta) with a minimum mapping unit of 0.5 hectare, 

after temporal filters application to specifically adjust the temporal consistency of 

forest plantation and agriculture classes. For the other classes, another temporal filter 

was applied to eliminate isolated pixels in the time series. MapBiomas Alerta 

deforestation data was used as an accumulated mask, and when it overlapped with any 

natural class, it was converted to class 21 (Mosaic of Uses). 
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Figure 2. General methodological steps of MapBiomas Brazil 10 m Collection 2 (beta). 
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3.1. Sentinel-2 Mosaics 

All biomes generated cloud-free Sentinel-2 composites based on specific 

periods of time to optimize the spectral contrast and help with the discrimination of 

LCLU classes. The cloud/shadow removal script takes advantage of the cloud 

probability  band and the GEE median reducer. The cloud probability can improve data 

integrity by indicating which pixels might be affected by artifacts or subject to cloud 

contamination. In conjunction, GEE can be instructed to pick the median pixel value in 

a stack of images. By doing so, the engine rejects values that are too bright (e.g., 

clouds) or too dark (e.g., shadows) and picks the median pixel value in each band over 

time. In the current version, harmonized Collection of Sentinel-2 Level 2A surface 

reflectance images were used in the classification.  

The cross-cutting themes (Pasture, Agriculture, Urban Area, Coastal Zone, and 

Mining) processed Sentinel-2 mosaics per scene basis. To reduce noise and improve the 

mosaic quality, a tool was developed to evaluate the images individually, excluding 

uninformative images (excess cloud cover).  

3.2. MapBiomas feature space 

The feature space for LCLU classification is composed of original Sentinel-2 

bands (blue, green, red, red edge 1, red edge 2, red edge 3, red edge 4, swir 1 and swir 

2) and reflectance index (NDVI, NDDI, NDWI, SAVI) per year. In addition, statistical 

reducers were used to generate temporal features such as: 

●​ Median: median of the pixel values within the defined stack of images 
●​ Median_dry: median of the quartile of the lowest pixel NDVI values 
●​ Median_wet: median of the quartile of the highest pixel NDVI values 
●​ Amplitude: amplitude of variation of the index considering all the year's images 
●​ stdDev: stdDev of the pixel values within the defined stack of images 
●​ Min: the lower annual value of the pixels of each band 
●​ Max: the higher annual value of the pixels of each band 

 

Each biome and cross-cutting theme executed a feature selection algorithm to 

choose the most appropriate subset of variables to train the respective classifier (e.g. 

Random Forest, Gradient Tree Boost, U-NET).  
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3.3. Legend 
 

The MapBiomas 10 m Collection 2 (beta) classification scheme is a hierarchical 
system comprising three categorical levels (Table 2). At Level 1, there are six classes: 1) 
Forest, 2) Herbaceous and shrub vegetation, 3) Farming, 4) Non-Vegetated Area, 5) 
Water, and 6) Not Observed. Level 2 has 20 classes across the six classes of the first 
categorical level. Agriculture (3.2) is the only class with further subdivisions down to 
the third categorical level, separating perennial and temporary crops. This collection 
thus comprises 21 LCLU classes. 
 

Table 2. Classes of land cover and land use of MapBiomas 10 m Collection 2 (beta) in 

Brazil. 

ID COLLECTION 2 (beta)      CLASSES 

NATURAL/ 

ANTHROPIC 

LAND COVER/ 

LAND USER 

1 1. Forest NATURAL COVER 

3    1.1. Forest Formation NATURAL COVER 

4    1.2. Savanna Formation NATURAL COVER 

5    1.3. Mangrove NATURAL COVER 

6    1.4. Floodable Forest NATURAL COVER 

49    1.5. Wooded Sandbank Vegetation  NATURAL COVER 

10 2. Herbaceous and shrub vegetation NATURAL COVER 

11   2.1. Wetland NATURAL COVER 

12   2.2. Grassland NATURAL COVER 

32   2.3. Hypersaline Tidal Flat NATURAL COVER 

29   2.4. Rocky Outcrop  NATURAL COVER 

50   2.5. Herbaceous Sandbank Vegetation  NATURAL COVER 

14 3. Farming ANTHROPIC USE 

15   3.1. Pasture ANTHROPIC COVER/USE 

18   3.2. Agriculture ANTHROPIC USE 

19     3.2.1. Temporary Crop ANTHROPIC USE 

36     3.2.2. Perennial Crop ANTHROPIC USE 

9   3.3. Forest Plantation ANTHROPIC USE 

21   3.3. Mosaic of Uses ANTHROPIC USE 

22 4. Non Vegetated Area 

NATURAL/ 

ANTHROPIC COVER/USE 

23   4.1. Beach, Dune, and Sand Spot NATURAL COVER 

24   4.2. Urban Area ANTHROPIC USE 

30   4.3. Mining ANTHROPIC USE 
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25   4.4. Other Non Vegetated Areas 

NATURAL/ 

ANTHROPIC COVER/USE 

26 5. Water 

NATURAL/ 

ANTHROPIC COVER/USE 

33 5.1. River, Lake and Ocean NATURAL COVER 

31 5.2. Aquaculture ANTHROPIC USE 

27 6. Not Observed NONE NONE 

 

4. Classification by biomes and cross-cutting 

themes 
Random forest demands the definition of a few parameters, such as the 

number of trees, a list of variables, and training samples. Each biome and cross-cutting 

theme map was produced using a particular set of these parameters, variables, and  

number of training samples. 

4.1. Amazon  

4.1.1. General map classification algorithm 

To generate the time series of land use and land cover of the Amazon biome 

with 10 m of spatial resolution, we built eight mosaics (2016 - 2023) using a 

harmonized collection with Surface Reflectance (SR) data from images of satellites 

Sentinel 2A and 2B. The feature space comprised image bands, vegetation indexes, and 

spectral mixture analysis (SMA) fractions. All these features are described in Table 3: 

Table 3. Feature space used in the Amazon biome land use and land cover mapping in 

MapBiomas 10 m Collection 2 (beta). 

Band or Index Metrics 

 Median Median (dry season) Median (wet season) 

Standard 

Deviation Amplitude 

Blue X X X X - 

Green X X X X - 

Red X X X X - 

NIR X X X X - 

SWIR 1 X X X X - 

SWIR 2 X X X X - 

NDVI X X X X X 

NDWI X X X X X 
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EVI2 X X X X X 

GV X - - - X 

NPV X X X X X 

Soil X X X X X 

NDFI X X X X X 

SEFI X X X X X 

WEFI X X X X X 

 

We mapped seven classes using the Random Forest Classifier (RFC): Forest 

Formation, Savanna Formation, Grassland, Pasture, Agriculture, Other Non-Vegetated 

Areas, and Water. In the post-classification step, we added three classes: Floodable 

Forest, Wetlands, and Rocky Outcrop. Floodable Forest and Rocky Outcrop were 

mapped as new classes in the Amazon in this Collection 2 (beta). 

4.1.2. Post-classification 

4.1.2.1. Wetlands and Floodable Forest Mapping 
​ We used the Sentinel-2 mosaics and reference maps to sort and stratify 

samples to map wetlands. To train and calibrate an RFC, we used the Global Ecosystem 

Dynamics Investigation - GEDI (Potapov et al., 2021), Shuttle Radar Topography Mission 

- SRTM (Farr et al., 2007), Height Above the Nearest Drainage - HAND (Donchyts et al., 

2016), Global Canopy Height (Lang et al., 2023), and SMA fraction imagery dataset 

(Souza Jr. et al., 2005). The sampled pixels were automatically classified as a binary 

map, Wetland, and Non-Wetland. We used the trained and calibrated samples to rank 

the eight annual mosaics. Finally, we analyze all eight annual layers classified as 

wetlands and apply a maximum reducer to synthesize the layers and define the 

Maximum Flooded Area (MFA) in the time series for the Amazon biome. Every year, we 

cross the LCLU map with the MFA layer. When the pixel agrees with Forest Formation 

and MFA, we remapped it as Floodable Forest. When the pixel agrees with the Savanna 

or Grassland and the MFA, we remapped it as Wetlands. The MFA mapping is 

conducted in a Region Of Interest (ROI), defined according to the features used to train 

and calibrate the RFC. Some features have spatial resolution different from Sentinel-2 

data, so in some cases, if the MFA area is greater than ROI, the final mapping can have 

an appearance of 30 meters of spatial resolution data. 

​ ​ 4.1.2.2. Rocky Outcrop Mapping 
​ ​ To map the Rocky Outcrops in the Amazon biome we used the same annual 

mosaics, plus random stratified samples (with Rocky Outcrop and Non-Outcrop) to 

train and calibrate an RFC. The steep altitudes and slopes, escarpments, hills and 

predominantly exposed soil, give a unique spectro-temporal behavior to outcrops. To 

represent such features, we used fractions derived from spectral mixing models, such 
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as Soil, NPV, GV. Morphological characteristics of the terrain were represented using 

data such as SRTM and HAND. 

 

4.1.2.3. Filtering 

​ After the classification step, we applied a logic sequence of four filters to 

improve the RFC results. The filters used are described as follows: 

 

●​ Gap Fill Filter: This filter aims to fill the missing information in the land use and 

land cover maps caused by cloud cover in the Sentinel-2 mosaics. The filter 

replaces each pixel that has missing information in the map with its class mode 

throughout the time series; 

●​ Spatial Filter: This filter aims to eliminate isolated pixels lower than one hectare 

that are highly likely to be misclassification problems. 

●​ Native Vegetation Stability: This filter acts in pixels that, during the time series, 

vary its classification only among native vegetation classes (Forest, Savanna and 

Grasslands). The shift among these classes has a low probability of occurring in 

the Amazon biome, and the most common change in natural vegetation areas is 

the conversion to farming use. This filter identifies this behavior and establishes 

the classification through the years using the mode of these three classes 

throughout the period; 

●​ Temporal Filter: We applied temporal rules to avoid undesirable transitions 

during the time series. We identified a few transitions misunderstood by the 

RFC, mainly in cases when Forest was converted to Pasture. To adjust these 

cases, we used a three years window to change the classification in the third 

year, from 2016 to 2023, as shown in Table 4: 

Table 4. Temporal filter rules applied in the Amazon biome mapping in the MapBiomas 

10 m Collection 2 (beta). 

Rule Class Year 1 Class Year 2 Class Year 3 New Class Year 3 

1 Forest Pasture Grassland Pasture 

2 Forest Pasture Savanna Pasture 

3 Forest Forest Grassland Pasture 

4 Forest Forest Savanna Pasture 

5 Floodable Forest Floodable Forest Savanna Pasture 
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4.2. Caatinga 

4.2.1. General map classification algorithm 

The process of generating the MapBiomas Collection 2 (beta) maps in the 

Caatinga biome, based on annual Sentinel 2A mosaics with a 10 m spatial resolution, 

utilized several steps of image classification processes (Figure 3). More details about 

the improvements made are described in Figure 4. 

 
 

Figure 3. Overview of the main steps in the Caatinga biome classification process in the 

MapBiomas 10 m Collection 2 (beta). 
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Figure 4. Detailed steps of MapBiomas 10 m Collection 2 (beta) (2016-2023) in the 

Caatinga biome. 

The MapBiomas Caatinga team, in alignment with other project teams, 

employed a stratified sampling strategy, segmenting the biome into base regions. To 

enhance the reliability of automatically collected samples, a mask was generated to 

exclude areas affected by temporal phenomena, such as wildfires and deforestation. 

Subsequently to the mask application, sample collection was restricted to those pixels 

maintaining consistent classification in the pre- and post-collection periods, and 

selecting information from the mosaic bands only within the mask-permitted areas. 

The resulting samples underwent a feature selection process, wherein spectral bands 

that optimized classifier performance in land cover class prediction were identified. 

The base mosaic comprised six spectral bands from the Sentinel-2 sensor, 

specifically Blue, Green, Red, NIR, SWIR1, and SWIR2, across three distinct temporal 

periods: wet, dry, and annual. Each band was identified by a composite name, such as 

'blue_median_dry', indicating the spectral band, the statistic (median), and the period 

(dry). Additionally, several spectral indices were calculated for the mosaics of each 

period and incorporated as additional bands. The calculated indices are presented in 

Table 5. 
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Table 5. Complementary bands added to the Caatinga feature space in the MapBiomas 

10 m Collection 2 (beta). 

Name Formula Descriptions Reference 

RVI (N * R) / (G ** 2.0) Ratio Vegetation Index Jordan (1969)  

RATIO 
 

N/R Ratio Pearson and Miller (1972)  

NDWI (G - N) / (G + N) Normalized Difference 
Water Index 

McFeeters (1996) 

AWEI B + 2.5 × G − 1.5 × (N + S1) 
− 0.25 × S2 

Automated Water 
Extraction Index 

Feyisa et al. (2014)  

IIA R/N Inverse Intensity Index 
 

 

EVI 2.5 × (N + R) / (N + 6R - 
7.5B + 1) 

Enhanced Vegetation 
Index 

Huete et al. (1994)  

GCVI (N/G ) - 1 Green Chlorophyll 
Vegetation Index 

Gitelson et al. (2005) 

GEMI (2 X (N^2 - R^2) + 1.5N + 
0.5R)/(N + R + 0.5) 

Global Environmental 
Monitoring Index 

Pinty and Verstraete (1992)  

CVI (N x R) / (G^2) Chlorophyll 
Vegetation Index 

Vincini et al. (2008)  

GLI (2G - R - B)/(2G + R + B) Green Leaf Index 
 

Lourenço et al. (2021) 

AVI (N x (1- R) x (N - R))/ 1000 Advanced Vegetation 
Index 

Loi et al.  (2017) 

BSI ((S1 + R) - (N + B))/((S1 + 
R) + (N + B)) 

Bare Soil Index Rikimaru et al. (2002)  

BRBA  Broadband 
Reflectance-Based 
Albedo 

Liang (2001)  

DSWI5 G / (N + S1 + R) Dynamic Surface 
Water Index 5 

Fisher et al. (2016) 

LSWI (N - S1)/(N + S1) Land Surface Water 
Index 

Xiao et al. (2002) -  

MBI ((S1 - S2 - N)/(S1 + S2 + N)) 
+ 0.5 

Modified Bare Soil 
Index 

Nguyen et al. (2021) 

UI (S2 - N) / (S2 + N) Urban Index Kawamura et al. (1997)  
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OSAVI (N - R) / (N + R + 0.16) Optimized Soil 
Adjusted Vegetation 
Index 

Rondeaux et al. (1996) 

RI (R - G)/(R + G) Redness Index Mathieu et al. (1998) 

BRIGHT
NESS 

 Tasseled Cap 
Transformation for 
Landsat TM 

Crist (1985)  

WETNES
SS 

 Tasseled Cap 
Transformation for 
Landsat TM. 

Crist (1985)  

GVMI ((N + 0.1) - (S1 + 0.02)) / 
((N + 0.1) + (S1 + 0.02)) 

Global Vegetation 
Moisture Index 
 

Ceccato et al. (2002) 

NIR_CO
NTRAST 

1/14 GLCM metrics 
proposed by Haralick, 

Textural Features for 
Image Classification 

CONTRAST NIR bands Haralick et al. 1973 

RED_CO
NTRAST 

CONTRAST RED bands 

NDDI (NDVI - NDWI) / (NDVI + 
NDWI) 

Normalized Difference 
Drought Index 

Gu et al. (2007) 

NDVI (N - R) / (N + R) Normalized Difference 
Vegetation Index 

Rouse et al. (1974)  

 

The feature selection process utilized the Recursive Feature Elimination with 

Cross-Validation (RFECV) methodology. RFECV's goal is to select the most important 

features, those that contribute the most to the model's performance. The recursive 

process of RFECV started with all features, training of the model, ranking  features by 

importance, removing the least important, and repeated all steps with cross-validation. 

The cross-validation part was crucial because it helped in determining the right number 

of features without overfitting (Chen and Guestrin, 2016). 

To optimize the classifier's parameters for maximum accuracy, the samples 

containing the information from the columns or bands selected in the previous process 

were used as a basis for hyperparameter tuning, aiming to determine the optimal 

parameters for each classification region. The method employed was Grid Search, a 

classic hyperparameter tuning technique used to identify the ideal combination of 

machine learning model hyperparameters. This technique evaluated the model's 

performance for each hyperparameter combination, identifying the one with the best 

performance (e.g., highest accuracy, lowest error). The combination with 
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cross-validation enhanced the robustness of the results, as demonstrated by Bergstra 

and Bengio (2012). 

Gradient Tree Boosting was employed as the classification algorithm. Annual 

mosaics were classified for the period from 2016 to 2023, encompassing eight land 

cover and land use (LCLU) classes: Forest Formation, Savanna Formation, Grassland, 

Mosaic of Uses, Other Non-Vegetated Areas, and Water, aligning with MapBiomas 

Collection 9. 

Gradient Tree Boosting is an ensemble learning method that sequentially 

aggregates multiple weak decision trees, typically weak, where each subsequent tree 

corrects the errors of its predecessors (Friedman, 2001; Natekin and Knoll, 2013; Abdi, 

2020; Ou et al., 2023). The algorithm takes advantage of the gradient method and the 

derivatives of the loss function to perform an iterative optimization of the model. This 

classifier was selected over Random Forest for the Caatinga biome due to its superior 

performance, attributed to specific characteristics relevant to the region: 

●​ Sequential Learning: Each tree is trained to minimize the residual (error) of the 

previous tree, progressively refining predictions. 

●​ Customizable Loss Function: It can be adapted to regression, binary 

classification, or multiclass classification problems. 

●​ Regularization: Hyperparameters such as learning_rate, max_depth, and 

subsample prevent overfitting by controlling model complexity. 

●​ Feature Importance: Identifies which input variables (e.g., spectral bands, 

vegetation indices) most significantly influence predictions. 

The Remote sensing data have complex characteristics that align well with 

Gradient Boosting strengths:  

1.​ Nonlinearity: Captures intricate relationships between spectral bands and 

target variables (e.g., land cover classes). 

2.​ High Dimensionality: Effectively handles datasets with many features, such as 

spectral bands, indices, and texture metrics. 

3.​ Imbalanced Data: Addresses scenarios like detecting deforestation in small 

areas versus intact forests by weighting classes or using sampling techniques. 

Gradient Tree Boosting is a powerful tool for remote sensing due to its 

flexibility, robustness to noise, and capacity to handle complex datasets. By combining 

sequential error correction with regularization techniques, it delivers high accuracy in 

tasks ranging from land cover mapping to environmental monitoring. 
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4.2.2. Post-classification filtering  

The mosaics used in the classification process exhibit noise and pixel gaps, 

which are more frequent at the beginning of the series with Landsat 5 data. These 

gaps, predominantly in the early years of the series, are corrected through temporal, 

frequency, and spatial filters, applied in the following order: 

●​ Gap-Fill Filter: This operation fills pixels with invalid values, using valid pixels from 

adjacent times (t+1 or t-1), following the chronological sequence of years 

(ascending or descending). 

●​ Frequency Filter: Applied to natural classes, this filter stabilizes small seasonal 

changes, especially in savannas and grasslands, which historically show greater 

confusion in the collections. It works by applying rules that stabilize the time 

series: pixels classified as savanna in 85% of the series force adjacent pixels of 

Forest Formation or Grassland Formation to be reclassified as savanna. Similar 

rules are applied for pixels with a frequency of 90% forest and 80% Grassland 

Formation. 

●​ Temporal Filter: This filter corrects short-term inconsistencies (1-2 years) in the 

time series. Pixels with atypical coverages, relative to the environmental pattern, 

are corrected by a moving window of 3, 4, or 5 pixels. 

●​ Spatial Filter: This filter eliminates "salt and pepper" noise, which are isolated 

pixels in areas of homogeneous classes. The operation ensures spatial coherence, 

using the "connectedPixelCount" function of Google Earth Engine (GEE) to assign 

a pixel the predominant class among its neighbors. 

After each cycle of applying these filters, one or more steps may be repeated in 

the post-classification, to refine the correction." 

 

4.3. Cerrado 

4.3.1. General map classification algorithm 

In developing the MapBiomas 10 m Collection 2.0 (beta) for the Cerrado biome, 

we employed a random forest based classification of Sentinel-2 yearly mosaics from 

2016 to 2023, encompassing eight land cover and land use (LCLU) classes: Forest 

Formation, Savanna Formation, Wetland, Grassland, Agriculture, Pasture, Other 

Non-Vegetated Areas and Water, consistent with the MapBiomas Collection 9. This 

classification approach not only captures native vegetation (NV) and water bodies but 

also extends to anthropogenic classes such as Agriculture and Pasture, offering a 

comprehensive landscape representation of the Cerrado. Notably, Agriculture and 

Pasture classes are identified in the initial classification stages and later transformed 
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into a “Mosaic of Uses” class during the post-processing step. This approach was 

essential to mitigate omission or commission errors in the NV classes, thus ensuring 

classification accuracy. Figure 5 provides an overview of the method for Cerrado native 

vegetation classification in Collection 2 (beta). 

 

 

Figure 5. The general map classification flowchart in Collection 2 (beta). Each gray 

cylinder and rectangle represents a key step in the classification schema. The gray text 

near databases and processes offers a short description of the step, while the green 

text highlights the main innovations. Arrows with a continuous black line connecting 

the key steps represent the main direction of the processing flux, while arrows with 

dotted black lines represent the databases that feed the main processes. Red text 

inside arrows refers to the asset type in the Google Earth Engine, while blue text offers 

a short description of the asset content. 

 

The feature space incorporated both common (all biomes) and biome-specific 

variables for the Cerrado. Standard variables included annual median reflectance, 

median values from wet and dry periods, and the standard deviation of annual 

Sentinel-2 bands (blue, green, red, red-edge 1/2/3, SWIR1, and SWIR2). The 

Cerrado-specific variables included several vegetation indices from Collection 9, 

supplemented by new indices based on red-edge bands. Table 6 details these 

additional variables. 
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Table 6. Complementary bands added to the Cerrado feature space in the MapBiomas 

10 m Collection 2. 

In addition to standard predictors, the Cerrado feature space was enriched with 

geolocation (latitude and longitude data) and Time Since the Last Fire (TSLF), calculated 

as the difference between the current year and the year of the last fire event (Alencar 

et al., 2022). Geomorphometric data were sourced from Geomorpho 90m dataset 

(Amatulli et al., 2020), which provided elevation, aspect, slope, ruggedness, east-west 

second order partial derivative, north-south second order partial derivative, profile 

curvature, tangential curvature, eastness, northness. We also incorporated the 

ANADEM/UFRGS (Laipelt et al., 2024) and the Multi-Error-Removed Improved-Terrain 

DEM (MERIT; Yamazaki et al., 2017) datasets for elevation and slope. This extensive 

feature set aimed to capture the spectral, temporal, and contextual complexities of the 

Cerrado. 

The Cerrado biome was divided into 38 classification regions in order to 

represent its environmental heterogeneity and improve the classification. The 

delineation of these areas was based on seasonal regional variation in vegetation 
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Type Name Formula Statistics Reference 

Sentinel 2 
-based 
indexes 

Normalized Difference 
Red Edge Index (NDVI 
705) 

NDVI 705 = (Red edge 1 - Red) / 
(Red edge 1 + Red) 

median,  
median_dry, 
median_wet, 
stdDev 

Gitelson and 
Merzlyak 

(1994) 

Vegetation Index 700 
 

VI700 = (Red Edge 1 - Red) / 
(Red Edge 1 + Red) 

median,  
median_dry, 
median_wet, 
stdDev 

Gitelson et al. 
(2002) 

Inverted Red-Edge 
Chlorophyll Index (IRECI) 

IRECI = (Red Edge 3 - Red) / (Red 
Edge 1 / Red Edge 2) 

median,  
median_dry, 
median_wet, 
stdDev 

Frampton et 
al. (2013) 

Chlorophyll Index 
Red-Edge (CIRE) 

CIRE = (NIR / Red Edge 1) - 1 

median,  
median_dry, 
median_wet, 
stdDev 

Gitelson et al. 
(2003) 

Transformed Chlorophyll 
Absorption Reflectance 
Index (TCARI) 

TCARI = 3 * ((Red Edge 1 - Red) - 
0.2 * (Red Edge 1 - Green) * 

(Red Edge 1 / Red)) 
 

median,  
median_dry, 
median_wet, 
stdDev 

Haboudane 
et al. (2002) 

Spectral Feature Depth 
Vegetation Index (SFDVI) 

SFDVI = ((NIR + Green) / 2) - 
((Red + Red Edge 2) / 2) 

median,  
median_dry, 
median_wet, 
stdDev 

Baptista 
(2015) 

Normalized Difference 
Red Edge Index (NDRE) 

NDRE = (NIR+ Red Edge 1) / 
(NIR−Red Edge 1) 

median,  
median_dry, 
median_wet, 
stdDev 

Gitelson and 
Merzlyak 

(1994) 
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based on normalized difference vegetation index (NDVI), as well as the 19 ecoregions 

proposed by Sano et al. (2019). Training samples for each one of the 38 classification 

regions were based on stable areas from Collection 9, enhanced by reference maps for 

native vegetation (state-level data from São Paulo, Tocantins, Federal District and 

Goiás) and deforestation (PRODES and MapBiomas Alerta) along with a GEDI-based 

methodology to exclude outliers. Cerrado's annual classification was performed using 

the Random Forest algorithm, implemented in the 'ee.Classifier.smileRandomForest' 

function with the output mode set to "Multiprobability" on the Google Earth Engine 

(GEE) platform. 

 

4.3.2. Post-classification filtering  
The pixel-based classification method required post-classification spatial and 

temporal filtering to better consistency and reduce errors. This process included 

multiple filters as follows: 

 

●​ Gap-Fill filter: The Gap-Fill Filter addressed temporal data gaps from cloud cover 

and shadows, filling no-data values with the nearest valid temporal 

classification. If no future valid classification was available, the preceding 

classification was used. 

 

●​ Segmentation filter: The segmentation process combined spectral, spatial, 

textural, and contextual information to refine LCLU classification. Using a 

Sentinel-2 mosaic (SWIR1, NIR, and Red bands) for each year from 2016 to 

2023, we applied the Simple Non-Iterative Clustering (SNIC) algorithm. This 

algorithm was set to a 5-pixel grid from Image. Segmentation.seedGrid to 

aggregate similar pixels based on spectral characteristics and texture within 

local neighborhoods, improving spatial coherence by creating homogeneous 

segments. Each segment was assigned the most frequent LCLU class within it 

(mode filter) to align the classification with segment boundaries, thus reducing 

noise and enhancing overall classification consistency.  

 

●​ Frequency filter: Frequency filtering was applied to stabilize the NV classes by 

applying criteria to pixels classified as NV in at least 85% of the time series. 

Subsequently, specific criteria were used for each native vegetation class to 

achieve stability. In cases where the Forest Formation class was present for 

more than 75% of the time series, this class was confirmed for the pixel in 

question for the entire time series. For Wetland, a minimum frequency of 85% 

was required, while for Savanna Formation and Grassland, the minimum 

frequency was 40% and 50%, respectively. These values were empirically set to 

achieve a more stable classification of the native vegetation, minimizing the 

uncertainties associated with temporal fluctuations. 
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●​ Temporal filter: The temporal filter ensures consistent LCLU change analysis by 

minimizing classification errors due to invalid transitions. In this step, 

Agriculture and Pasture classes were reclassified to “Mosaic of Uses” (21) to 

filter farming areas as a unique class. Then, it followed a series of sequential 

steps. The first step consisted of a 3-year moving window from 2017 to 2022 

(excluding first and last years) that corrected for all intermediate years, 

considering previous and subsequent years (-1 and +1 years). Each transition 

was evaluated according to an order of priority, being: Savanna Formation (4), 

Grassland Formation (12), Forest Formation (3), Wetland (11), Mosaic of Uses 

(21), Other Non-vegetated Areas (25) and River, Lake, and Ocean (33). The 

second step involves checking the values of pixels that were not classified as 

Mosaic of Uses (21) in 2023 (last year) but were classified as such in 2022 and 

2021. The value in 2023 is corrected to be consistent with previous years to 

avoid uncorrected regeneration in the recent year. Finally, the filter verified the 

regeneration of native vegetation (NV) in the last year. Pixels indicating 

regeneration between 2022 and 2023 were evaluated, and areas smaller than 1 

ha were discarded to ensure classification consistency.  

 

●​ No false-regrowth filter: The false-regrowth filter was applied exclusively to the 

Forest Formation (3) class. This filter prevents artificial Forest Formation 

expansions in silviculture areas, identifying abrupt transitions to Forest 

Formation as potential classification errors. Pixels that were initially classified as 

“Mosaic of Uses” (21) in 2016-2017 but were subsequently classified as Forest 

Formation in the following years were adjusted to retain the anthropogenic 

designation. This procedure guarantees that the artificial expansion of forest 

areas was kept to a minimum, thus providing a more precise representation of 

land use and land cover dynamics. 

 

●​ Geomorphometric filter: The geomorphometric filter was applied only to the 

Wetland class (11) to enhance classification consistency by mitigating erroneous 

classifications in areas characterized by unsuitable terrain conditions. This filter 

removed Wetland pixels located in regions with slopes exceeding 10 degrees. 

Pixels within these conditions were remapped to the most frequent 

neighboring LCLU cover class, considering a kernel of 24 pixels. 

 

●​ Spatial filter: The spatial filter implemented in this collection was similar to the 

30 m Collection 9 and enhances spatial consistency along pixel boundaries. The 

"connectedPixelCount" function, inherent to the Google Earth Engine platform, 

was employed to identify connected components (neighbors) sharing the same 

pixel value. The spatial filter established a minimum connection value of six 
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adjacent pixels, corresponding to a minimum mappable area of approximately 

0.54 hectares.  

 

Figure 6 illustrates the percentage of classification changes due to 

post-processing filters. For the Collection 2 (beta), on average, 89% of the pixels 

remained the same throughout the annual processing flow, while 11% of the pixels 

were modified at some stage of post-processing. Among the applied filters, the 

segmentation filter was the one that most modifies the classification, affecting 4% of 

the pixels per year, followed by the frequency filter, which modifies about 2% of the 

pixels. Thus, post-processing filters increased the spatial and temporal consistency of 

land cover and land use data, while keeping fewer changes in the final maps. 

 

 

Figure 6. Annual percentage of pixel changes per post-classification filtering step in the 

Cerrado classification in the MapBiomas 10 m Collection 2 (beta). 

 

4.3.3. Rocky outcrop map classification algorithm 
The classification process for rocky outcrop followed a distinct approach 

compared to that used for the Cerrado’s general map, aiming to avoid overestimation 

of the extent of rocky outcrop areas. The rocky outcrop was a new class in MapBiomas 

10 m Collection 2 for the Cerrado biome. The classification flowchart is shown in Figure 

7.  The feature space used in this classification include the same spectral bands and 

indexes described in section 4.3.1. However, three additional terrain-related predictor 

variables were included: relative relief (the difference between the highest and lowest 

contour values in a given area), valley depth (the elevation difference between a valley 

and its upstream ridge), and the topographic position index (TPI; which identifies 

topographic slope positions) (Ganerød et al., 2023).  

Training samples included those visually collected by an interpreter, as well as 

samples provided by the Brazilian Geological Service (SGB/CPRM), subsequently 

validated by the interpreter. In total, 2,868 samples were collected. The model was 

trained in Google Earth Engine using the function ee.Classifier.smileRandomForest with 
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ntree = 300, and applied to the Sentinel mosaics through a "Multiprobability" 

approach, similar to the general classification workflow.  

 

Figure 7. The rocky outcrop classification steps in the Cerrado of MapBiomas 10 m 

Collection 2 (beta). Each gray cylinder and rectangle represents a key step in the 

classification schema. The gray text near databases and processes offers a short 

description of the step, while the green text highlights the main innovations. Arrows 

with a continuous black line connecting the key steps represent the main direction of 

the processing flux, while arrows with dotted black lines represent the databases that 

feed the main processes. Red text inside arrows refers to the asset type in the Google 

Earth Engine, while blue text offers a short description of the asset content. 

 

Post-processing filters were implemented in the rocky outcrop classification to 

ensure consistency, following description above: 

 

●​ Gap-Fill filter: A temporal filter that uses classifications from adjacent years to 

fill pixels with missing data, ensuring continuity and consistency for rocky 

outcrop classification. 

 

●​ Segmentation filter: This filter was set to a 5-pixel grid from 

Image.Segmentation.seedGrid to aggregate similar pixels based on spectral 

characteristics and texture within local neighborhoods, improving spatial 

coherence by creating homogeneous segments. 
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●​ Frequency filter: Aims to regulate the rocky outcrop class over time, given that 

this class does not exhibit significant land cover and land use changes. 

Consequently, a pixel was classified as a rocky outcrop if it was present in at 

least 50% of the time series observations. 

 

●​ Spatial filter: Used to remove spurious isolated pixels that may appear in the 

classification. This filter eliminated isolated pixels based on a connectivity 

threshold of 10 pixels, equivalent to an area of 0.9 ha. 

 

After classification and post-processing, the rocky outcrop classification layer is 

superimposed on the land use and land cover maps in the Cerrado. 

 

4.4. Atlantic Forest 

4.4.1. General Map Classification Algorithm 

The MapBiomas 10 m Collection 2 (beta) LCLU dataset for the Atlantic Forest 

biome classified Sentinel-2 annual mosaics from 2016 to 2023 using the Random Forest 

algorithm (Figure 8). 

 

Figure 8. Classification process of MapBiomas 10 m Collection 2 (beta) in the Atlantic Forest 

biome. Inclined gray rectangles represents databases, while linear rectangles point key-steps in 
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the workflow. Solid arrows indicate main flow, and dashed arrows point to assessment and 

evaluation cycles. Pink and red text shows additional information for specific steps. 

 

The LCLU classes mapped with Random Forest classification in the Atlantic 

Forest were: Forest Formation, Savanna Formation, Grassland, Mosaic of Uses, 

Non-vegetated areas, Rock Outcrop, Forest Plantation, and Water. Additionally, an extra 

classification for the Agriculture class was carried out in specific regions of the biome: 

Southeast and Northeast. With the defined regions, samples were collected in 

agricultural areas and then classified following the same process as the other classes 

using Random Forest. The Agriculture and Forest Plantation classification aimed to 

reduce potential errors in the classification of natural areas and minimize omissions. 

Later, these two classes were converted to class 21 (Mosaic of uses) in the final Atlantic 

Forest dataset. 

The classification was performed in homogeneous regions to reduce sample 

and class confusion and to achieve a better balance between samples and results. The  

biome was divided into 30 regions based on native vegetation types in the Atlantic 

Forest (IBGE, 2021). For each region, the number of stable samples used in the 

classification was defined, considering the relevance of each class in each region. 

Classes were assigned as main, secondary, or rare. 

In the classification process, stable samples based on Sentinel data were used 

for the first time. Additionally, Global Forest Canopy Height (GFCH) data based on GEDI 

was used to filter stable areas for two classes: Forest Formation (height ≥ 8) and 

Grassland (height ≤ 7). Reference maps of the states of São Paulo (IF, 2020), Minas 

Gerais (IEF), Paraná (IAT, 2020)  

https://geopr.iat.pr.gov.br/portal/apps/dashboards/1eca83bf72e44193ae62f282574da52f)
, and Espírito Santo (IEMA, 2015 - https://geobases.es.gov.br/links-para-mapes1215) 

were also used as sources to filter stable samples in natural areas.  All reference maps 

are available on the MapBiomas Brazil website  

(https://brasil.mapbiomas.org/en/mapas-de-referencia/). 

The feature space used to classify the Atlantic Forest biome comprised a subset 

of the 60 most relevant bands for each region, out of a group of 140 variables. These 

variables include original Sentinel reflectance bands, vegetation indices, spectral 

mixture modeling-derived variables, and terrain morphometry (e.g., slope). 

Additionally, bands resulting from the image segmentation function 

(ee.Algorithms.Image.Segmentation.SNIC) with the original median bands were used. 

This function generated a "clusters" band, "clusters_green_text" band, and 

"clusters_ndfi_median" band for each year. The definition of the subset was made 

based on a feature importance analysis produced with Random Forest classification 
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using all bands and 500 interactions. All codes used are available on our public GitHub 

(https://github.com/mapbiomas/brazil-atlantic-forest). 

The need for complementary samples was evaluated through visual inspection 

and by comparing the preliminary accuracy outputs for each region. Complementary 

sample collection was also done by drawing polygons using the Google Earth Engine 

Code Editor. The same concept of stable samples was applied, checking the false-color 

composites of the Sentinel mosaics for all 8 years while drawing polygons. Based on 

expert knowledge of each region, polygon samples from each class were collected, and 

the number of random points within these polygons was defined to balance the 

samples. 

4.4.2. Wetland Classification 

To reduce confusion with other natural vegetation classes and avoid temporal 

variations that do not exist in the wetland class, a distinct classification was carried out 

for wetlands. This classification followed the same steps as the classification of other 

classes using Random Forest, but it considered the Height Above Nearest Drainage 

(HAND) product as a proxy to represent groundwater depth and one classification for 

all the biome. 

The result of the classification was added to the land use and land cover maps 

of the biome and underwent the same post-classification filters. Wetland areas were 

only overlaid on pixels mapped as class 21 (Mosaic of uses) in the main classification. 

4.4.3. Post Classification 

Due to the pixel-based classification method and the extended temporal series, 

a list of post-classification spatial and temporal filters was applied as follows: 

●​ Gap-Fill Filter: No-data values (gaps) are theoretically not allowed and were 

replaced by the temporally nearest valid classification. In this procedure, if no 

“future” valid position was available, the no-data value is replaced by its 

previous valid class. Therefore, gaps should only exist if a given pixel has been 

permanently classified as no-data throughout the entire temporal domain. 

 

●​ Spatial Filter: The spatial filter avoids unwanted modifications to the edges of 

pixel groups (blobs). A spatial filter was built based on the 

"connectedPixelCount" function. Native to the GEE platform, this function 

locates connected components (neighbors) that share the same pixel value. 

Thus, only pixels that do not share connections to a predefined number of 

identical neighbors are considered isolated. In this filter, at least 25 connected 

pixels are needed to reach the minimum connection value. Consequently, the 
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minimum mapping unit is directly affected by the spatial filter applied, which 

was defined as 25 pixels (~0.25 ha). 

 

●​ Temporal Filter: The temporal filter uses subsequent years to replace pixels that 

have invalid transitions. The first process checks any native vegetation class (3, 

4, 11, 12, 29) that is not this class in 2016 but is equal in 2017, 2018, and 2019, 

and then corrects 2016 values to avoid regeneration in the first year. The 

second process looks for pixels in 2023 that are equal to 21 (Mosaic of Uses) 

but are not 21 in 2022. The value in 2023 is then converted to natural 

vegetation to avoid any regeneration in the last year. These two processes only 

occur in areas where the change is greater than 1 hectare. The same rule is 

applied to avoid deforestation (less than 1 ha) in the first and last year of the 

series. 

 

●​ Frequency Filter: Frequency filters were applied only to pixels considered 

"stable native vegetation." In stable native vegetation all years are changed to 

the most common class. The result of these frequency filters is a classification 

with no change between native classes (e.g., Forest and Savanna). Another 

frequency filter affects transitions in natural vegetation classes in the middle of 

the historical series. Considering that the class (3, 4, 11, 12, 29) occurs in the 

first and last years of the series, any classification of Mosaic of Uses (class 21) in 

intermediate years will be converted to natural vegetation. Similarly, if natural 

vegetation does not occur in the first and last years but appears in intermediate 

years, it is remapped to 21 (Mosaic of Uses), thus avoiding false regenerations 

and deforestation. 

 

●​ Wooded Sandbank Vegetation Classification: This class was mapped from the 

post-classification. The ALOS DSM Global 30m was used to identify coastal 

forest areas with less than 25m altitude, which were converted to this class 

using a spatial mask to exclude certain regions in the northeast of Brazil. 

 

●​ Herbaceous Sandbank Vegetation Classification: This class was mapped from 

the post-classification. The IBGE Soil Map (IBGE, 2021) was used as a reference. 

Class 13 (Other non-forest formations), classified through the general process 

using Random Forest, was reclassified into this category in areas with Spodosols 

(Podzol) and Neosols soils. 
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4.5. Pampa 

4.5.1. General map classification method 
The MapBiomas 10 m Collection 2 (beta) for the Pampa biome was developed 

using the Random Forest machine learning algorithm for annual Sentinel-2 mosaics 

from 2016 to 2023. For the classification, seven LCLU were considered, including: 

Forest Formation, Wetland, Grassland, Mosaic of Uses, Non-Vegetated Areas, Rocky 

Outcrop and Water. Subsequently, during the post-classification stage, two other 

classes were added: Wooded and Herbaceous Sandbank Vegetation, through 

reclassification of classes Forest Formation and Grassland, respectively, whenever 

located over sandy soils in the coastal zone. 

The classification process involved three main stages: generating training 

samples, incorporating variables into the feature space and classifying the mosaics 

(Figure 9). Random training samples were generated based on the 30-m MapBiomas 9 

Collection, sampling only those areas that have remained in the same class from 1999 

to 2023 (stable areas).  

The classification was carried out independently in seven homogeneous regions 

within the biome, an adaptation of the former nine ecological systems proposed by 

Hasenack et al. (2010) for the Brazilian Pampa biome, using vegetation, relief and soils 

data. For each region we generated 2,000 samples for each class. 

Annual image mosaics were produced based on annual median reflectance and 

the annual standard deviation of Sentinel-2 bands calculated over all the images 

available in a previously defined “optimal period” within the year 

(September-November) and median values of the wet (scenes with higher NDVI values) 

and the dry periods (scenes with lower NDVI values) along the year. We also included 

spectral indexes supplemented with geolocation (latitude and longitude), the 

ANADEM/UFRGS slope datasets and the Global Height Above the Nearest Drainage 

(HAND) (Donchyts, et al., 2016). Finally, two segmentation bands generated with the 

Simple Non-Iterative Clustering (SNIC) algorithm were added to the feature space 

(Table 7). The median values of the NDVI and EVI bands and a grid of 20 and 80 pixels 

as the location spacing of the superpixel seed, respectively, were used to cluster pixels 

with similar spectral characteristics. The average values per cluster resulting from the 

NDVI and EVI bands were added to the feature space.  

The final feature space comprised 145 variables. However, from this dataset, we 

used only those considered as the most important for classification (70 in total). This 

selection took into account the most important variables considering the performance 

within distinct regions of the Pampa and the ones that showed high importance in 

most years of the collection in a previous classification. All codes used are available on 

our public GitHub (https://github.com/mapbiomas/brazil-pampa). 
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Figure 9. Flowchart outlining the main steps in the Pampa biome classification process 
of Collection 2 MapBiomas 10 m. 
 

Table 7. Bands added to the Pampa feature space in the Collection 2 MapBiomas 10 m. 

 
Band Stats Name 

avi median dry Advanced Vegetation Index 
brba median, median dry and 

wet 
Band Ratio for Built-up Area 

blue band median  
brightness median Tasselled Cap - brightness 

bsi median Bare Soil Index 
cvi median Chlorophyll Vegetation Index 

dswi5 median wet Disease-Water Stress Index 5 
EVI median, median dry and 

wet 
Enhanced vegetation index 

EVI cluster band median Enhanced vegetation index 

gcvi median dry and wet Green Chlorophyll Vegetation Index 
gemi median, median dry Global Environment Monitoring Index 

gli median wet Green Leaf Index 
green band min  

green texture median  
gvmi median, median dry and 

wet 
Global Vegetation Moisture Index 

hand  Heigth Above Nearest Drainage (GENA) 
iia median, median dry and 

wet 
Indicator of water index 

lai median Leaf Area Index 
latitude   

longitude   
lswi median dry and wet Land Surface Water Index 
mbi median, median dry and 

wet 
Modified Bare Soil Index 
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msi median dry Moisture Stress Index 
nddi median and median dry Normalized Difference Drought Index 

NDVI median, median dry and 
wet 

Normalized Difference Vegetation Index 

NDVI cluster band median Normalized Difference Vegetation Index 
ndwi median wet Normalized Difference Water Index 
osavi median wet Optimized Soil-Adjusted Vegetation Index 
ratio median, median dry and 

wet 
Ratio Vegetation Index 

red band median dry  
red edge 1 band stdDev, median dry and wet  
red edge 3 band median wet  
red edge 4 band stdDev and median dry  

ri median Normalized Difference Red/Green Redness Index 
rvi median Relative Vigor Index 

shape median and median wet Shape Index 

slope  Slope (ANA) 

spri median Photochemical Reflectance Index 
swir 1 band   
swir 2 band   

ui median and median dry Urban Index 
wetness median and median dry Tasselled Cap - wetness 

 

The number of samples of each class to be used in the classification process 

was established through a temporal weighted balance. The general idea was that the 

sample size of each class must be proportional to the area occupied by the class i in the 

year j. Each class weight was calculated as proportion and multiplied by the number of 

2,000 points available in the training data set to establish the number of samples to 

use in the classification of each specific year. To calculate these annual weights we first 

converted the class area values observed in MapBiomas Brazil Collection 9 land cover 

and land use classification, for each year, to relative proportions of the region of 

interest. Then, we fitted a linear regression, for each class, considering the relative 

proportions (y) along the 8 years (x) and extracted the intercept (b0) and the slope of 

the regression line (b1). For the year to be classified, each class weight (dependent 

variable) was calculated using the year as the independent variable. These weights 

corresponded to proportions (0-1) for each class that were multiplied by the total 

available samples to set the number of samples in use. We also set a minimum sample 

size of 100 training points to ensure sufficient representation for those classes with 

lowest area proportion within the regions. 

The final classification process involved repeated classifications with the 

evaluation of the results using a set of reference samples collected for 2017, visual 

contrast to Sentinel mosaics and the area of each mapped class. According to the need, 

in each reclassification, adjustments were made to the number of samples per class 

and also the addition of complementary samples. 

 

4.5.2. Post classification  
The classification was post-processed using seven different filters designed to 

correct the residual classification errors.  
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●​ Gap-fill filter: Designed to fill in pixels classified as Not Observed in a given year. 

Filling was based on a forward procedure, repeating the information from the 

previous year. In cases of no-data values remaining in the classification, a 

backward procedure was carried out, using the following year's information to 

fill in the previous year. 

●​ Spatial filter: This filter used a mask to modify isolated pixels or very small 

patches (less than six pixels) of a class, replacing each one with the most 

frequent value in the eight corresponding neighbors. The filter used the 

"connectedPixelCount" function in Google Earth Engine and produced a result 

where the minimum mapped area was a patch with at least six pixels of the 

same class (~0.54 ha). 

●​ Temporal filter: The temporal filter used information from previous and 

subsequent years to identify and correct pixel misclassification in a given year, 

eliminating transitions considered invalid. The rules were different for the first, 

last and intermediate years of the collection. The process began by analyzing 

the first three years of the collection, comparing the class of 2016 with those of 

the following two years. Every pixel classified with a certain class in the first 

year (2016) and assigned to another class in the following two years (2017 and 

2018) was reclassified to the class of the subsequent years. For the last three 

years, it compared the year 2023 with the previous two and, whenever a pixel 

was classified as 21, 29 or 33 in both years, but was different in the last year, 

then it was replaced by the same class as the previous ones. Both procedures 

aimed to avoid cases of false positives. The last step applied a 3-year moving 

window to correct the remaining intermediate years. Whenever the first and 

the third year of the window had the same class and the middle year was 

different, it was replaced by their class. This procedure had the purpose of 

fixing abrupt transitions that were unlikely to happen. The filter was applied, 

step by step, respecting the following sequence of classes: [29, 22, 21, 11, 3, 12, 

33]. In addition, a filter for intermediate years was developed to avoid false 

transitions between natural classes. 

●​ Frequency filter: Different frequency filters were developed to correct cases of 

false positives, using information from each pixel over the years. Their general 

logic consisted of searching for a specific combination of classes for each pixel 

over the 8 years, producing a subset of pixels considered eligible for correction. 

The filter then detected and replaced only the years in which cases were 

considered potential false positives, using a fixed class value, which was usually 

the mode of the classifications detected along the temporal range. This type of 

filter was used with restraint to solve only very specific cases. The filters 

involved correcting misclassifications of wetlands in other classes, confusion of 

rice with temporary water or wetlands, confusion of rocky outcrops and other 
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non-vegetated areas, false positives of water and wetlands on shaded slopes in 

regions with undulating relief and confusion between agriculture and rocky 

outcrops and agriculture and non-vegetated areas. 

●​ Particular cases filter: This filter was developed to correct false positives of 

water in the 2023 classification year due to excessive rainfall amount. 

Therefore, temporarily submerged areas classified as water in 2023 were 

reclassified to the same class in 2022. 

●​ Time-series start/end filter: This filter smoothed the transitions between the 

penultimate and final years of the time series. Evaluations of the collection 

showed an unexpected increase in anthropic classes in the last year and a 

decrease in natural classes. Therefore, this filter was developed to smooth out 

this abrupt transition, avoiding all transitions from natural areas to anthropic 

areas, and vice versa, in patches equal to or smaller than 2 hectares. In these 

cases, the pixels corresponding to the last year received the same classification 

as the penultimate year. 

●​ Ending filter: The same 3-year temporal filter described above was applied to 

remove accidental and unwanted effects in the filtered classification resulting 

from the combined application of the filters. 

 

4.6. Pantanal 

4.6.1. General map classification algorithm 

In the development of the MapBiomas 10 m Collection 2 (beta) for the Pantanal 

biome, classification based on Random Forest was used. The classification was 

performed on annual mosaics from Sentinel-2 from 2016 to 2023. The land use and 

land cover classes mapped included Forest Formation, Savanna Formation, Wetland, 

Grassland, Agriculture, Pasture, Other Non-Vegetated Areas, Rocky Outcrops, and 

Water. The Rocky Outcrop class was added after a binary classification to identify these 

specific areas. Wetland and Water were added during the post-classification stage 

through reclassification of classes based on a threshold of maximum flooded area using 

a humidity index. 

The Pantanal biome was divided into seven regions based on drought and 

flooding patterns, sub-basin watersheds, and the distribution of native vegetation as 

presented in different regionalization approaches (Silva and Abdon, 1998; Assine, 

2015). The goal of this process was to reduce confusion and noise in the classification, 

improving sample balance in more homogeneous regions. 

Training samples for each of the seven classification regions were based on 

stable areas from the first MapBiomas 10 m Collection (beta), based on the 
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MapBiomas Brazil Collection 9 sampling areas that remained stable between 2013 and 

2023. The classification process involved three main stages: generating training 

samples, incorporating variables into the feature space and classifying the mosaics. 

 

Figure 10. Flowchart outlining the main steps in the Pantanal biome classification 
process of Collection 2 MapBiomas 10 m. 
 

The variables included annual median reflectance, median values for dry and 

wet periods, and the standard deviation of the annual bands of Sentinel-2 (blue, green, 

red, red-edge 1/2/3, SWIR1, and SWIR2) and some mainly indexes as ‘evi’, ndvi’ and 

‘ndwi’. Additionally, bands resulting from the image segmentation function 

(ee.Algorithms.Image.Segmentation.SNIC) with the original median bands were used. 

This function generated a "clusters" band, "clusters_green_text" band, and 

"clusters_ndfi_median" band for each year. All codes used are available on our public 

GitHub (https://github.com/mapbiomas/brazil-pantanal). 
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4.6.2. Post-classification  

4.6.2.1. Masks  

Some natural grassland areas in the western portion of the Pantanal can be 

easily confused and classified as exotic pastures by RF because of the overgrazing or 

the soils exposition during a dry period. To avoid this misclassification, a mask of 

'non-pasture' was manually drawn based on historical reference maps (CI et al., 2009), 

PRODES data (Assis et al., 2019) and high resolution images, and then applied for 

excluding pixels misclassified as pasture. For the same purpose, a second 'non-pasture' 

mask was applied considering flooded pixels in more than 75% of the entire Collection. 

​ Also, in order to improve the classification for the most recent years, a mask of 

'deforested areas' was built from the MapBiomas Alertas validated polygons. 

Following, all native vegetation pixels intercepting the mask were reclassified to 

farming class in the deforestation event year and in the following years. It is worth 

remembering that these deforestation polygons are available from 2019. 

4.6.2.2. Water and Wetland data integration 

To generate Water and Wetland data, the Normalized Difference Dynamic Index 

(NDDI) was calculated for the dry and wet periods of the annual mosaic. Once a 

threshold has been defined, it differentiates flooded areas from the water surface and 

non-flooded areas. The intention with this processing is to map the maximum flooded 

area each year, considering that the Pantanal is one of the largest wetlands in the 

world subject to a significant flood pulse that varies intra-annually and multi-annually. 

This annual water and wetland data were added to the map of 'non-wet' classes 

only in areas classified as grasslands, considering that the methodology for the latter is 

not adapted to identify flooded forest and savannah. This is also a strategy to avoid 

false positives from humid areas in the shade of the relief, urban areas or roads. 

 

4.6.2.3. Rocky outcrop data integration 

Rocky outcrops are very limited in the Pantanal biome, primarily concentrated 

in the Serra do Amolar region. Due to their rarity and spatially isolated nature, a 

supervised binary classification was conducted specifically for this class, separate from 

the broader classifications of forest, savanna, and pasture. Based on manually collected 

training samples derived from high-resolution imagery (Planet and Google Images), 

areas were classified as either 'rocky outcrop' or 'non-rocky outcrop'. This classification 

of rocky outcrop areas was then integrated into the existing land use and land cover 

map, overlaying areas previously identified as grasslands. 

 

4.6.2.4. Filtering 

To enhance the temporal consistency of the mapping and minimize errors from 

the classification method, several filters were applied: 
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●​ Gap Fill filter: In this filter, no-data values (“gaps”) were theoretically not 

allowed and were replaced by the temporally nearest valid classification. In this 

procedure, if no “future” valid position was available, then the no-data value 

was replaced by its previous valid class. Therefore, gaps should only exist if a 

given pixel was permanently classified as no-data throughout the entire 

temporal domain.  

●​ Trajectory filter: To avoid false transitions between savanna formation and 

grassland in short time intervals, a filter was applied that considered the 

trajectory of the pixel according to Pontius (2022). Considering the trajectory of 

absence - alternation - absence, the number of changes that the class was 

involved in and also the pixel mode along the time series, the filter stabilizes 

these two classes. This filter was also implemented to prevent areas of Forest or 

Savanna Formations that were converted to anthropic uses from regenerating 

as Grassland. It addressed part of the confusion between pasture areas and 

Grassland. Specifically, the filter ensured that any area converted to pasture 

remained classified as pasture for at least seven consecutive years, reducing 

classification errors. 

●​ Spatial Filter: A spatial filter was applied to prevent undesired changes along 

the edges of pixel groups using the “connectedPixelCount” function. Native to 

the Google Earth Engine (GEE) platform, this function identifies connected 

pixels (neighbors) with the same value. Isolated pixels—those not sharing 

connections with a predefined number of identical neighbors—were considered 

separately. Similar to the implementation in Collection 9, this filter improved 

spatial consistency along pixel boundaries. 

4.6.3.​Integration with cross-cutting themes 

The final map generated by the Pantanal biome team was integrated with maps 

from some cross-cutting themes, which represent rare classes or classes that demand a 

specific mapping strategy. These external themes comprised urban areas (24), mining 

(30), agriculture (41) and forest plantation (9). They were superimposed on the 

Pantanal data, resulting in final maps of the biome containing 13 classes. 

4.7. Agriculture 

4.7.1​ Methodology overview 

For this collection the agriculture classes follow the general methodology for 

agricultural classes in MapBiomas’ Collection 9, although without specific crop 

differentiation. For this collection the available agricultural classes are, at legend level 

2, Forest Plantation and Agriculture, the last being further divided into Temporary Crop 
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and Perennial Crop at legend level 3. Codes are available on our public Github 

(https://github.com/mapbiomas/brazil-agriculture). 

4.7.2​ Classification with Random Forest 

The agriculture mosaic was divided into an annual and seasonal mosaic. The 

annual mosaic was composed from images from the entire calendar year, while the 

seasonal mosaic was constructed based on the annual vegetative peak per mosaic tile. 

The vegetative peak month was identified based on the maximum value of EVI2 in the 

crop year, which starts at October of the previous calendar year and ends at September 

of the target calendar year, as shown in Figure 11. The seasonal mosaic took into 

account the period between three months before and three months after the 

vegetative peak month. 

 

 

Figure 11. Scheme to obtain vegetation peak month, year by year, per mosaic tile in the 

agriculture classification. 

Considering both seasonal and annual mosaics, the total feature space 

consisted of 80 variables. From Sentinel-2, the Green, Red, Red Edge1, NIR, SWIR1 and 

SWIR2 bands were used, and the EVI2 and NDWI indexes were calculated. For each 

band and index, the median, standard deviation, percentile 20 and 85 were calculated, 

in addition to a Quality Mosaic band.​ 

​ For the classification of each class, samples were obtained from stable samples 

of MapBiomas’ Collection 9 and other reference maps, listed in Table 8. A simple 

sample approach was used for temporary crops, where samples are selected at random 

throughout the reference mask, with no restriction to sample balance. An stratified 

sample approach was used for Forest Plantation and Perennial Crops, with samples 
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being balanced by the percentage of the class in each tile.  

Table 8. Reference maps used in the classification for the agriculture classes in the 

MapBiomas 10 m Collection 2 (beta). 

Class 
Training samples 
per tile 

Sampling 
Approach 

 Source 

Temporary 

Crop 
10,000 Simple 

 

MapBiomas Brazil Collection 9 stable 

samples; Agência Nacional de Águas 

(ANA, 2020) and Companhia Nacional de 

Abastecimento (Conab), Terraclass. 

Perennial Crop 10,000 Stratified 

MapBiomas Brazil Collection 9 stable 

samples; Companhia Nacional de 

Abastecimento (Conab); Quarta 

comunicação nacional do Brasil à UNFCCC 

. 

Forest 

Plantation 
10,000 Stratified 

Global Forest Watch, Transparent World 

(2015) 

Each class was classified separately, using a Random Forest model with 100 

trees. The classification for Temporary Crop used both the seasonal and annual mosaic, 

while Forest plantation used the annual mosaic. The Perennial Crop class used the 

annual mosaic but was only partially classified using a Random Forest model, mainly in 

areas of coffee production. 

4.7.3​ Classification with Deep Learning 

​ The Perennial Crop class was made using two Deep Learning models for 

different regions. The samples used in this classification were manually collected using 

high resolution images and visual interpretation. The model training and predictions 

were made in Google Colab, with results imported back to Google Earth Engine. 

For the north region of Brazil, mainly in areas of oil palm, an adaptation from 

the deeplabv3_resnet50 architecture (TORCHVISION CONTRIBUTORS, 2023) was used. 

In its default configuration, the dimensions received were (256, 256, 3), which 

corresponded to an 256x256 pixels image with three bands. The adaptation was made 

to allow it to receive six bands, including Blue, Green, Red, NIR, SWIR1 from Sentinel-2 

and the VH band from Sentinel-1. The model was trained from scratch for 150 epochs.  

For other regions of Brazil, a model adapted from the U-Net architecture was 

used. The model was trained with tiles of 260x260 pixel size, with data from Sentinel-2 
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Red and NIR bands, as well as Sentinel-1 VH band.  

4.7.4​ Filters 

​ Post processing consisted in a temporal and spatial filter. The temporal filter 

used was a moving windows filter with a window and a threshold. This filter goes step 

by step at the time series looking for a window of values centered at the current step, 

meaning it also considers the previous and next values. The threshold indicates the 

minimum occurrences of the class in the window to assign the step value as the class. 

This was used to fill gaps due to misclassifications and to reduce omissions. The 

parameters for Temporary Crop were window of 3 and threshold of 2, while Perennial 

Crop and Forest Plantation used a window of 5 and threshold of 3. An additional filter 

in the final year was also applied that acts as a fill, to prevent sudden reduction in area 

caused by omissions in the last years and the inability of the window to go beyond the 

end of the series. 

​ A spatial filter was used to remove clusters of isolated pixels, and was applied 

before and after the temporal filter. This filter aims to reduce inclusion errors and noise 

from the classifier and filters. The minimum number of connected pixels was set to 36. 

4.8. Coastal Zone 

4.8.1​ Methodology overview 

For this MapBiomas 10 m Collection 2 (beta), the classes presented in the 

Coastal Zone followed the same general methodology described and applied to these 

classes in the MapBiomas 30 m Collection 9, but without the use of the frequency filter 

(final filter). The classes in this collection are listed in Table 9, along with their 

respective references. 

Table 9 - Reference datasets to guide training samples of Coastal Zone classes in the 

MapBiomas 10 m Collection 2 (beta). 

Class References 

Mangrove MapBiomas Collection 9, Giri et al., 2011, ICMBio Mangrove Atlas 
(ICMBio, 2018), Global Mangrove Watch (Bunting et al., 2018; 
Thomas et al., 2018), Diniz et al., 2019, Panorama da Conservação 
dos Ecossistemas Costeiros e Marinhos no Brasil (MMA, 2010), and 
visual inspection. 

Aquaculture/Salt-Culture MapBiomas Collection 9, Atlas Dos Remanescentes Florestais da 
Mata Atlântica (SOS Mata Atlântica, 2020), Barbier and Cox, 2003; 
Guimarães et al., 2010; Prates, Gonçalves and Rosa, 2010, Queiroz 
et al., 2013; Tenório et al., 2015; Thomas et al., 2017, Diniz et al., 
2021, and visual inspection 
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Apicum/Hypersaline tidal 
flat  

MapBiomas Collection 9, Atlas Dos Remanescentes Florestais da 
Mata Atlântica (SOS Mata Atlântica, 2020), Prates, Gonçalves and 
Rosa, 2010, Panorama da Conservação dos Ecossistemas Costeiros e 
Marinhos no Brasil (MMA, 2010), and visual inspection. 

Beaches, Dunes and Sand 
Spots 

MapBiomas Collection 9, Atlas Dos Remanescentes Florestais da 
Mata Atlântica (SOS Mata Atlântica, 2020), Prates, Gonçalves and 
Rosa, 2010, Panorama da Conservação dos Ecossistemas Costeiros e 
Marinhos no Brasil (MMA, 2010), and visual inspection. 

Shallow Coral Reef Áreas Prioritárias para Conservação da Biodiversidade (MMA), 
Panorama da Conservação dos Ecossistemas Costeiros e Marinhos 
no Brasil (MMA, 2010), Atlas dos Recifes de Corais nas Unidades de 
Conservação Brasileiras (Prates, 2006), Allen Coral Reef Atlas, and 
UNEP-WCMC Global Distribution of Coral Reefs. 

 

​ The general detection methodology is shown in Figure 11, showing two possible 

paths; machine learning or deep learning detection. The steps of image processing, 

acquisition of training datasets, classification and integration and accuracy are also 

shown. It is worth noting that machine learning methods were performed on the GEE 

platform, while deep learning methods were performed locally. 

 

Figure 12.  Workflow of Coastal Zone mapping, validation, and publication in the 

MapBiomas 10 m Collection 2 (beta). All data processing occurs within the Google 

Earth Engine - GEE platform, except for the aquaculture/saline pattern and Hypersaline 

Tidal Flat classification, dependent on the TensorFlow library. In green are steps related 

to sampling design. In yellow are steps related to classification.  
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4.8.2​ Mosaic preparation 

The annual Sentinel 2 mosaic provided by MapBiomas was used. The values 

​​were normalized by dividing by 37, with subsequent selection of the spectral bands: 

green, red, nir, swir1. With this, the spectral indices NDVI, MNDWI, MMRI were 

calculated and aggregated (Table 10). The mosaic was also normalized to include values 

​​in the range of unsigned integers of 8 bits. These were stored as assets in the Google 

Earth Engine platform. 

Table 10. Spectral Indices used for Coastal Zone classification in the MapBiomas 10 m 

Collection 2 (beta). 

Index Expression Reducer Reference 

NDVI (NIR - RED) / (NIR + RED) 
Median and 

Standard 
Deviation 

Tucker, 1979 

MNDWI 
(GREEN - SWIR1) / (GREEN + 
SWIR1) 

Median and 
Standard 
Deviation 

Xu, 2006 

MMRI 
Modular Mangrove Recognition 
Index 

Median and 
Standard 
Deviation 

Diniz et al., 2019 

 

4.8.3​ Classification with Random Forest 

The mapping of classes using the Random Forest algorithm (Breiman, 2001) 

occurred in its entirety on the Google Earth Engine platform, using mosaics stored in 

asset format. The selected classes were mangroves and beaches, dunes and 

sandbanks. The classification occurred separately, resulting in binary maps indicating 

the presence and absence of the respective target class. Table 11 presents the 

configurations of the Random Forest algorithm used. 

We have selected training points based on the availability of reference maps 

and the previous MapBiomas 10 m Collection 1 (beta) (with Sentinel 2 images). When 

reference maps that match the classes and/or year to be classified, reference maps of 

the closest possible timeframe to the median composites were used. When no 

reference map was available, then the classification results of the previous year were 

used for subsequent training.  
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Table 11. Random Forest parameters used to classify each one of the years. 

Mangroves, beaches, dunes, sand spots, and shallow coral reefs. 

 

 

4.8.4​ Segmentation with Deep Learning 

The detection of the aquaculture and apicum (hypersaline tidal flat) classes was 

performed using convolutional neural networks, specifically a model based on U-net. 

The need to map using Deep Learning techniques occurs due to the high dependence 

of the target on its spatial context: aquacultures have as a fundamental characteristic a 

grouping of rectangular pools; apicuns are spatially linked to the presence of 

mangroves, and are spectrally exposed soil. 

The mosaics used for deep learning were stored locally, and with the selection 

of the attributes present in Table 12. After that, the supervised layer was developed for 

each class and sample collection geometries for training and validation were designed, 

with the samples being transferred to local storage. The years selected for the 

composition of the samples were 2023 for aquaculture and 2021 for apicum. 

The training was carried out using the Keras library, with Tensor Flow as the 

processing backend. The other training characteristics are present in Table 12. 

Table 12. U-Net parameters used to classify each year. The U-Net-derived classes are 

the aquaculture and Hypersaline Tidal Flat classes. 

Parameter Value 

Classifier U-Net 

Epochs 100 

Tile-Size 256 x 256 px 

Optimizer Nadam (Adam with Nesterov momentum) 

Learning Rate 5e-6 

Samples 70% (training) / 30% (validation) 

Attributes Red, Green, Nir, Swir 1, MNDWI, NDVI 

Classes 2 (probabilistic segmentation) 

​  
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Parameter Value 

Number of trees 100 

Number of points 100000 

Number of Variables 25 (Coastal Zone + Coastal Waters (Coral Reefs Area) 

Classes 2 (binary classification) 
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​ ​ After training, the trained model performed predictions on mosaic patches 

from each respective year, resulting in probabilistic maps of target existence. These 

images were sent to GEE for subsequent binarization and post-processing. 

4.8.5​ Filters 

Due to the classification method's pixel-based nature and the very long 

temporal series, a set of post-classification filters was applied. The post-classification 

process includes applying a gap-fill, a temporal and a spatial filter. 

4.8.5.1 Gap-Fill filter  

The chain starts by filling in possible no-data values. In a long-time series of 

severely cloud-affected regions, such as tropical coastal zones, it is expected that 

no-data values may populate some of the resultant median composite pixels. In this 

filter, no-data values (“gaps”) are theoretically not allowed and are replaced by the 

temporally nearest valid classification. In this procedure, if no “future” valid position is 

available, the no-data value is replaced by its previous valid class. Up to three prior 

years can be used to fill in persistent no-data positions. Therefore, gaps should only 

exist if a given pixel has been permanently classified as no-data throughout the entire 

temporal domain. A mask of years was built to keep track of pixel temporal origins. 

4.8.5.2 Temporal filter 

After gap-filling, a temporal filter was executed. The temporal filter uses 

sequential classifications in a 3-year unidirectional moving window to identify 

temporally non-permitted transitions. Based on a single generic rule (GR), the temporal 

filter inspects the central position of three consecutive years (“ternary”). If the 

extremities of the ternary are identical, but the center position is not, then the central 

pixel is reclassified to match its temporal neighbor class, as shown in Table 13. 

Table 13. The temporal filter inspects the central position for three consecutive years, 

and in cases of identical extremities, the center position is reclassified to match its 

neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3), 

respectively. GR means “generic rule”, while Tg and N-Tg represent target class and 

non-target class pixels. 

Rule    Input (Year)   Output    
 T1 T2 T3 T1 T2 T3 
GR Tg N-Tg Tg Tg Tg Tg 
GR N-Tg Tg N-Tg N-Tg N-Tg N-Tg 
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​ 4.8.5.3 Spatial filter 

​ Posteriorly, a spatial filter was applied. To avoid unwanted modifications to the 

edges of the pixel groups (blobs), a spatial filter was built based on the 

"connectedPixelCount" function. Native to the GEE platform, this function locates 

connected components (neighbors) that share the same pixel value. Thus, only pixels 

that do not share connections to a predefined number of identical neighbors are 

considered isolated. This filter needs at least ten connected pixels to reach the 

minimum connection value. Consequently, the minimum mapping unit is directly 

affected by the spatial filter applied, and it was defined as 10 pixels (~1 ha). 

 

4.9. Mining 

4.9.1​ Methodology overview 

Mining mapping in the new MapBiomas 10 m Collection carried the same 

method as in the MapBiomas 30 m Collection 9 in most of Brazil’s territory. It included 

updates on the quantity and quality of the training samples, and a more significant 

number of activation grids were used in the processing steps of the mining recognition 

algorithm, which is based on a U-Net classifier. 

The reference dataset used in our classification consisted of multiple data 

sources, as specified in Table 14. 

Table 14.  Mining class references used in MapBiomas 10 m Collection 2 (beta). 

Mining class reference dataset Mining Deter: http://terrabrasilis.dpi.inpe.br/ 

MapBiomas Alert: http://alerta.mapgiomas.org 

RAISG: http://www.amazoniasocioambiental.org 

ISA: https://www.socioambiental.org/ 

CPRM-GeoSGB: https://geosgb.cprm.gov.br/ 

Ahkbrasilien: https://www.ahkbrasilien.com.br/ 

AMW: https://amazonminingwatch.org/ and 

Additional visual interpretation. 

 

The multiple reference data were visually analyzed and converted to bounding 

boxes, which were overlaid on grids used to process the deep-learning mining 

recognition algorithm in a parallel fashion. 

The entire process is structured in 4 steps (Figure 13). First (1), GEE generates 

the cloud-free composites and creates the initial training dataset. Second (2), the 
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mosaics and training data are downloaded and stored locally. Three (3) initiate 

patch-wise training and classification. In the fourth step (4), the classified product is 

spatially and temporally filtered. The filtered product is visually and statistically 

inspected. Multiple iterations may be used until a satisfactory spatial and temporal 

quality is achieved 

 

Figure 13. Mining Detection Earth Engine-TensorFlow pipeline. 

  

4.9.2​ Classification with Deep Learning 

For the supervised classification of the Landsat mosaics, we selected training 

samples geometries) from the previously generated bounding boxes (grids). Like any 

supervised algorithm, our U-net-based approach depends on human-labeled training 

data, categorized as mining (Mi) and non-mining (N-Mi) and guided by the reference 

dataset, the samples are visually delineated.  The labels generated for Sentinel data 

differ from the ones made for Landsat, accounting for change in resolution and which 

patterns / mining structures are visible to the specialists in each image. 

Images were processed on 512x512 chips, making the U-net network 2x larger 

than that used in the regular Collection classification. 

It is essential to highlight that no differentiation was made between artisanal or 

industrial mining samples during the classification process: they include both artisanal 

and industrial patterns. The dissociation between such patterns, garimpo or industrial, 

and the exploited main substance is a post-classification step that is not present in the 

Sentinel Collections. 

Once the sample collection is finished, the U-net classification results in the 

pre-filtered classification product. The classified data is injected back into GEE, where 

spatial-temporal filters and visual inspection occur.  
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4.9.3​ Filters 

In GEE, the resulting classification undergoes a chain of filters with the goal of 

reducing salt-and-pepper effect and adding spatiotemporal consistency. This process 

includes the application of the following filters: gap-fill, temporal and spatial. 

4.9.3.1 Gap-Fill filter  

The post-processing steps start by filling in possible no-data values. In a series 

of severely cloud-affected regions, such as forested areas of tropical countries, pixels 

with no-data values are expected to be present in median composite mosaics. The 

gap-fill filter replaces the no-data values (i.e., image “gaps”) with a classified pixel from 

the nearest date available. In this procedure, if no “future” valid class is available, the 

no-data value is replaced by the nearest previous valid class. Up to three prior years 

can fill in persistent no-data pixels. Therefore, gaps should only exist if a given pixel has 

been permanently classified as no-data throughout the entire temporal series. 

4.9.3.2 Temporal filter 

Next, we applied a temporal filter that uses sequential classifications in a 3-year 

unidirectional moving window to identify temporally non-permitted transitions. Based 

on a single generic rule (GR), the temporal filter inspects the central position of three 

consecutive years (“ternary”). It changes its value if it differs from the first and last 

years in the ternary, which must have identical classes. The central year of the ternary 

is then reclassified to match its temporal neighbor class, as shown in Table 15. 

 

 

Table 15. The temporal filter inspects the central position for three consecutive years, 

and in cases of identical extremities, the center position is reclassified to match its 

neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3), 

respectively. GR means “generic rule,” while Mi and N-Mi represent mining and 

non-mining pixels. 

Rule    Input (Year)   Output    
 T1 T2 T3 T1 T2 T3 
GR Mi N-Mi Mi Mi Mi Mi 
GR N-Mi Mi N-Mi N-Mi N-Mi N-Mi 

 

4.9.3.3 Spatial filter 

Then, a spatial filter was applied to avoid unwanted modifications on the edges 

of grouping pixels (clusters) by using the “connectedPixelCount” function. Native to the 
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GEE platform, this function locates connected components (neighbors) that share the 

same pixel value. Thus, only pixels that do not share connections to a pre-defined 

number of identical neighbors are considered isolated, as shown in Figure 10. This filter 

needs at least ten connected pixels to reach the minimum connection value. 

Consequently, the minimum mapping unit is directly affected by the spatial filter 

applied, which was defined as 10 pixels (~1 ha). 

 

Figure 14.  The spatial filter removes pixels that do not share neighbors of identical 

value. The minimum connection value was 10 pixels. 

 

4.9.3.4 Frequency filter 

The last post-processing filter step is the frequency filter. This filter considers the 

frequency of a given class throughout the entire time series. Thus, all class occurrences with 

less than 25% temporal persistence (2 years or out of 8) are filtered out and incorporated into 

the non-class binary. This mechanism contributes to reducing the temporal oscillation in the 

classification, decreasing the number of false positives, and preserving consolidated classes. 

 

4.10. Pasture 

4.10.1 Methodology overview 

Using data from ESA's Sentinel 2 constellation at 10 m resolution for the period 

of 2016 to 2023, the MapBiomas 10 m Collection 2 (beta) pasture map follows the 

general approach (Parente et al., 2019) for pasture mapping in the MapBiomas 9 

Collection, however with some minimal changes, focusing mainly on ensure a 

resolution leap with a better precision in pastureland detection (Figure 15). 
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Figure 15 - Pasture mapping workflow regarding the MapBiomas 10 m Collection 2 

(beta). 

With a broad option of spectral bands, ESA’S Harmonized Sentinel-2 MSI Top of 

Atmosphere data, stored in Earth Engine Platform, were used to build a brand new 

feature space, considering the same features used by Parente et al. (2019) with the 

addition of newer ones.  

ESA data makes available the Red Edge spectral region, which is crucial for a 

better understanding of plant health and behavior. Also, these new spectral bands 

increase the range of possible spectral indexes that could be estimated with satellite 

data and some of them, like Soil-Adjusted Total Vegetation Index - SATVI (Marsett et al., 

2006), are specific for pasture/grassland areas. In total, 166 metrics were used as 

feature space in this collection (Table 16), adding 88 new metrics and keeping the 78 

used in MapBiomas Col. 9.  
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Table 16. Table exemplifying the feature space used in the pasture mapping with 

Sentinel 2 constellation, composed of 162 spectral-temporal metrics (Sentinel 2 based) 

and 4 time independent metrics (geographic coordinates and SRTM data).  

Bands/Indexes Reducers 

Blue (B2) 

Minimum, Median, 

Maximum, Amplitude, 

Standard Deviation, 

Percentile 

(10%,25%,75%,90%) 

Green (B3) 

Red (B4) 

Red Edge 1 (B5) 

Red Edge 2 (B6) 

Red Edge 3 (B7) 

Near Infrared 

Red Edge 4 (B8A) 

Short Wave Infrared 1 (B11) 

Short Wave Infrared 2 (B12) 

Normalized Difference Vegetation Index - NDVI (Tucker et al., 1979) 

Normalized Difference Water Index - NDWI (Gao, 1996) 

Cellulose Absorption Index - CAI (Nagler et al., 2000) 

Carotenoid Reflectance Index - CRI1 (Gitelson et al., 2007) 

Anthocyanin Reflectance Index - ARI1 (Gitelson et al., 2007) 

Simple Ratio Red/Green Red-Green Ratio - RGR (Gamon and Surfus, 1999) 

Plant Senescence Reflectance Index - PSRI (Merzlyak et al., 1999) 

Soil-Adjusted Total Vegetation Index - SATVI (Marsett et al., 2006) 

Geographic Coordinate - Longitude - 

Geographic Coordinate - Latitude - 

SRTM - Elevation (Farr et al., 2007) - 

SRTM - Slope (Farr et al., 2007) - 

 

The Random Forest classifier training considered the same 50,000 random 

samples visually interpreted by experts using TVI plus 4,664 intervention points, used 

to ensure that the classifier will not fail to detect pasture areas not covered by the 

main sampling approach. Furthermore, the classifier hyperparameters were kept the 

same except for the number of variables per split, which follows the square root value 

of the feature space size (approximately 13). 
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4.10.2 Post-processing 

The spatiotemporal filter used in the probabilistic pasture maps, before 

collection integration, was kept the same as in the other MapBiomas collections due to 

its simplicity and quality of results, which are even superior to some complex 3D 

Savitzky-Golay filters. It consists of a multidimensional median filter with a 3 x 3 

window in space (X and Y) for 5 years (Z) packed in the Scipy library from the Python 

language. After the filtering process, the maps are transformed from probabilistic maps 

to discrete maps by establishing the cut-off point for pasture areas for probabilities 

greater than 51%. 

4.11. Urban Area 

4.11.1. Classification algorithm 

The methodology for this collection follows the methodology for Urban Area 

data of Collection 9 and the general methodology of Collection 10 m (Figure 16). To 

reduce computational cost for urban area mapping, the classification was performed 

only in “search areas”, defined by polygons where urban areas were likely to be found. 

A uniform hexagonal polygon grid was created over Brazilian territory and intersected 

with urban census tracts (IBGE, 2021)1, resulting in a search area of 226 million ha, 

covering 27% of the Brazilian territory.  

 

 

Figure 16. Basic scheme of the production of Urban Area maps in MapBiomas 

 

1 Census tracts are classified according to their situation. To build the search areas, we 
considered tracts in the following situations: (1) urban area with high density of buildings, (2) 
urban area with low density of buildings and (3) urban nucleus.  
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For this theme, Brazil’s territory was divided into 558 tiles that correspond to 

charts with a scale of 1:250.000, derived from the International Map of the World 

(IMW). Tiles with no search area were discarded, resulting in 522 valid tiles. Then, a 

specific classifier was trained to each of these tiles of each year of the 39 years of the 

Collection 9. Random Forest parameters for Urban Area mapping were set to 500 trees 

and 20 minimum leaf populations. Samples were taken from Collection 9 and 

considering all tiles, the average balance of samples was: between 2016-2017, 1 urban 

sample to 1.9 non-urban samples; and in the final years (2018-2023), 1 urban sample 

to 1.7 non-urban samples. 

 

4.11.2. Spatial Filter 

The classifier may incorrectly assign high urban area (UA) probability values to 

non-urban features like mining, sands, and rural structures, while urban areas with 

trees or parks might receive low probability values. Universal probability thresholds for 

defining urban areas would result in errors due to the diverse characteristics of 

different cities. To solve this problem, an algorithm for choosing the best probability 

threshold is applied, which defines the best cut-off value for each grid. 

To refine urban area (UA) classification, data on urbanized and slum areas from 

the 2022 census were combined with the Index of Roads and Infrastructure (IRS) 

developed by Justiniano et al. (2022). These datasets provide a comprehensive view, 

enabling the delineation of the maximum extent of urban pixels based on recent 

historical patterns, improving accuracy in identifying and classifying urban spaces.  

Isolated pixels or small clusters, often errors in classification, are addressed by 

spatial filters using morphological operations. For urban areas, small zero-value clusters 

might represent squares, parks, or water features, while in non-urban areas, isolated 

one-value pixels could represent agricultural or rural structures. The spatial filters apply 

circular kernels, performing closing operations to remove small holes (fewer than 10 

pixels) and opening operations to eliminate noise (fewer than 10 pixels). 

4.11.3. Temporal Filter 

Temporal filters (TF) were applied as rules to check classification consistency 

over time, observing the conceptual aspects delimited to the mapped category. For this 

purpose, the sequence of filters indicated and described in Table 17 was developed. 

General rules (GR), Persistent Noise (PN) for middle years, and specific rules for the 

first years (FYR) and last years (LYR).  
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Table 17. Descriptions of Rules. 

 

5. Integration and Post-classification  

5.1 Integration 

The maps of each biome and of cross-cutting themes were integrated on a 

pixel-by-pixel basis through the hierarchical overlap of each mapped class, following 

prevalence rules defined by experts. Certain prevalence rules may show exceptions for 

one or more classes. Some classes present specific prevalence rules or exceptions in 

certain biomes or regions. The prevalence rules and its exceptions are listed in Annex II. 

5.2. Filters on Integrated Maps 

In the integrated maps four spatial and temporal filters were applied. Two filters 

were applied to adjust the temporal consistency of the forest plantation and 

agriculture classes specifically. For the other classes, another temporal filter was used 

to remove isolated pixels in the time series (e.g. an isolated class pixel between two 

different classes pixels). A spatial filter similar to the one described was applied on the 

integrated maps to remove isolated classes with less than half hectare as well as noise 

resulting from integration. MapBiomas Alerta deforestation data was used as an 

accumulated mask, and when it overlapped with any natural class, it was converted to 

class 21 (Mosaic of Uses). 
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Rule Years (i) 
Kernel 

Conditionals 
i-2 i-1 i i+1 i+2 i+3 

PN 1986 to 
2021  x x x x  

If the pixel under analysis is classified as ‘UA’ 
within three or more years of the interval, then 

the ‘UA’ is validated 

GR 1986 to 
2022  x x x   

If the pixel under analysis is classified as ‘UA’ 
within two or more years of the interval, then 

the ‘UA’ is validated 

FYR 1985   x x   
If the pixel under analysis is classified as ‘UA’ 
within two years of the kernel, then the ‘UA’ is 

validated 

LYR 2023  x x    
If the pixel under analysis is classified as ‘UA’ 

within two or more years, then the ‘UA’ is 
validated 
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5.3. Statistics 

Zonal statistics of the mapped classes were calculated for different spatial units, 

such as the biomes, states, municipalities, watersheds, protected areas (including 

indigenous lands and conservation units) and can be found in 

https://brasil.mapbiomas.org/en/estatisticas/.  

 

6. Concluding Remarks and Perspectives 

The algorithms developed for pre-processing and classifying Sentinel-2 imagery 

hold promise for expanding the possible applications of MapBiomas LCLU maps. 

Thanks to Google Earth Engine and open source technology, it is possible to access and 

process large-scale satellite imagery datasets such as the one generated by the 

MapBiomas project. The replication of this type of project is viable for other areas of 

the planet. The MapBiomas initiative has expanded to all South American countries 

and Indonesia. In addition, the MapBiomas team will keep improving the following 

collections in subsequent years. The open-access MapBiomas LCLU dataset allowed 

several scientific publications in Brazil and abroad. Policymakers and stakeholders also 

use the dataset for public policies and decision-makers in the country. 
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 ANNEXES  

Annex I: MapBiomas Network 
MapBiomas is an initiative of the Climate Observatory, involving a collaborative 

network of NGOs, universities and technology companies organized by biomes and 

cross-cutting themes. 

Biomes Coordination: 

●​ Amazon – Institute of People and Environment of the Amazon (IMAZON) 

●​ Caatinga – State University of Feira de Santana (UEFS), Northeast Plants 

Association (APNE), and Geodatin 

●​ Cerrado – Amazon Environmental Research Institute (IPAM) 

●​ Atlantic Forest – Foundation SOS Atlantic Forest and ArcPlan 

●​ Pampa – Federal University of Rio Grande do Sul (UFRGS) and GeoKarten 

●​ Pantanal – Institute SOS Pantanal and ArcPlan 

Cross-cutting Themes Coordination: 

●​ Pasture – Federal University of Goias (LAPIG/UFG) 

●​ Agriculture – Agrosatelite until collection 8. Remap in collection 9. 

●​ Coastal Zone and Mining – Vale Technological Institute (ITV) and Solved 

●​ Urban Area – University of São Paulo (USP - QUAPÁ-FAU and YBY), Federal 

University of Bahia (UFBA) and Federal University of São Carlos (UFSCar - 

NEEPC) 

Technology Partners: 

●​ Google 

●​ EcoStage 

●​ Ecode 

Financing: 

●​ Amazon Fund 
●​ Arapyaú Institute 
●​ Children’s Investment Fund Foundation (CIFF) 
●​ Climate and Land Use Alliance (CLUA) 
●​ Good Energies Foundation 
●​ Gordon & Betty Moore Foundation 
●​ Humanize Institute 
●​ Institute for Climate and Society (iCS) 
●​ Montpelier Foundation 
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●​ Mulago Foundation 
●​ Norway’s International Climate and Forest Initiative (NICFI) 
●​ Global Wildlife Conservation (GWC) 

●​ OAK Foundation 

●​ Quadrature Climate Foundation (QCF) 

●​ Sequoia Foundation 

●​ Skoll Foundation 

●​ Walmart Foundation 

●​ Woods & Wayside International 

 
Institutional Partners: 

●​ Arapyaú Institute 
●​ MapBiomas Support Institute (IAMap) 
●​ WRI Brasil 

●​ AVINA Foundation 

General Coordination: Tasso Azevedo (SEEG/OC) 

Technical Coordination: Marcos Rosa (ArcPlan) 

Scientific Coordination: Julia Shimbo (IPAM) 

The project counts on an Independent Committee of Scientific Advice composed by 

renowned specialists: 

●​ Dr. Alexandre Camargo Coutinho (Embrapa) 

●​ Dr. Edson Eygi Sano (IBAMA) 

●​ Dr. Gerd Sparovek (University of São Paulo) 

●​ Dra. Leila Maria Garcia Fonseca (INPE) 

●​ Dra. Liana Oighenstein Anderson (CEMADEN) 

●​ Dra. Marina Hirota (Federal University of Santa Catarina) 

Former members: 

●​ Dr. Gilberto Camara Neto (INPE) 

●​ Dr. Joberto Veloso de Freitas (Federal University of Amazonas) 

●​ Dr. Matthew C. Hansen (Maryland University) 

●​ Dr. Mercedes Bustamante (University of Brasília) 

●​ Dr. Timothy Boucher (TNC) 

●​ Dr. Robert Gilmore Pontius Jr (Clark University) 

 

Technical Partners: 

●​ Institute of Agricultural and Forest Management and Certification - Imaflora 

(IMAFLORA) 
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●​ Energy and Environment Institute (IEMA) 

●​ Socioambiental Institute (ISA) 

●​ Institute for Democracy and Sustainability (IDS) 

●​ The Nature Conservancy (TNC) 

●​ Life Center Institute (ICV) 

●​ WWF Brasil 

●​ Brasil I.O 
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Annex II 

MapBiomas 10 m Collection 2 (beta) prevalence rules, given by the “Prevalence ID” 

(from the most to the less prevalent class), used for integrating biomes and 

cross-cutting themes maps. Since some classes are mapped both as cross-cutting 

themes and in the biomes, the “Source” column indicates the source of information 

for that specific rule. “Exceptions” are classes that are prevalent over the listed one 

in that region.  

CLASS 
ID 

   CLASS NAME SOURCE PREVALENCE 
ID 

EXCEPTION 

30 4.3. Mining Mining 1 In São Paulo and Mato Grosso 
states, the cross-cutting class 24 
is prevalent 

23 4.1. Beach, Dune, and 
Sand Spot 

Coastal Zone 2   

23 4.1. Beach, Dune, and 
Sand Spot 

Biomes 3  

5 1.3. Mangrove Coastal Zone 4   

31 5.2. Aquaculture Coastal Zone 5   

32 2.3. Hypersaline Tidal Flat Coastal Zone 6   

24 4.2. Urban Area Urban Area 7  

9 3.3. Forest Plantation  Agriculture 8 At Lagoa dos Peixes (Pampa), the 
classes 3, 11, 12, 29, 33, 49, 50 
are prevalent 

9 3.3. Forest Plantation  Biomes 9  

29 2.4. Rocky Outcrop Biomes 10   

20 3.2.1. Temporary crop Agriculture 11 Where both biomes and 
MapBiomas Water indicates class 
33, class 33 is prevalent 

50 2.5. Herbaceous 
Sandbank Vegetation 

Biomes 12  

25 4.4. Other Non Vegetated 
Areas 

Biomes 13  
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33 5.1. River, Lake and 
Ocean  

Water 14  

33 5.1. River, Lake and 
Ocean  

Biomes 15  

3 1.1. Forest Formation Biomes 16  

4 1.2. Savanna Formation Biomes 17 Outside protected areas in 
Cerrado the class 15 is prevalent 

49 1.5. Wooded Sandbank 
Vegetation      

Biomes 18  

6 1.4. Floodable Forest Biomes 19  

11 2.1 Wetland Biomes 20 Outside protected areas in 
Cerrado the class 15 is prevalent 

12 2.2. Grassland Formation Biomes 21 Outside protected areas in 
Cerrado the class 15 is prevalent 

15 3.1. Pasture Pasture 22 n Pantanal class 21 is converted 
to 15. In Pampa, class 21 is 
prevalent. Within protected 
areas in Cerrado natural classes 
are prevalent. 

15 3.1. Pasture Biomes 23  

21 3.4. Mosaic of Uses Biomes 24  

36 3.2.2. Perennial crop Agriculture 25   

25 4.4 Other non vegetated 
areas 

Biomes 26  
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