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1. Overview 

This document presents the methodology developed to map urban areas across the Brazilian 
territory from 1985 to 2024, as part of Collection 10 of the MapBiomas Project. Building on 
the general MapBiomas framework, the urban area mapping process applies supervised 
classification using the Random Forest algorithm (Breiman, 2001) and annual composite 
Landsat imagery. 

The methodological workflow comprises three main steps: (i) mosaic generation, to obtain 
annual composites from Landsat imagery; (ii) probability classification, which includes 
sample preparation, training of classification models, prediction of class probabilities, and 
application of thresholds for binary urban/non-urban classification; and (iii) post-classification 
procedures, encompassing spatial and temporal filtering to improve classification consistency 
and minimize errors. Subsequently, classification results are exported to the MapBiomas 
workspace for integration with other thematic classifications within the broader land cover 
and land use mapping framework (Figure 1). Details about each step are provided further 
and were conducted using Google Earth Engine platform, javascript and python. The codes 
are openly available in the MapBiomas GitHub repository. 

 

Figure 1. Basic scheme of urban areas classification. 

Over successive collections, the urban classification method has been continuously refined 
through conceptual and methodological improvements. For Collection 10, updates include 
procedures for training sample selection, and probability thresholding for urban classification. 
Additional enhancements were made to improve the temporal consistency of the results and 
reduce classification noise, including the use of a temporal smoothing, probability threshold 
optimization.  

Post-processing steps, including temporal and spatial filtering, were revised in this collection. 
The main changes compared to previous versions include (i) the reordering of the filter 
application sequence, with the temporal filter applied prior to the spatial filter; (ii) a simplified 
and less aggressive temporal filter design to better preserve legitimate temporal dynamics; 
and (iii) an updated spatial filtering approach, enabling control over the size of spatial 
artifacts, such as isolated misclassified pixels and small internal gaps while incorporating 
new auxiliary datasets to enhance spatial consistency. 
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Since Collection 6, the mapped class has been designated as "Urban/Urbanized Area" (UA), 
replacing the previous label "Urban Infrastructure". This update aligns the nomenclature with 
terminology commonly used in urban studies, including by IBGE (2017). UA are areas with 
predominance of significant density of buildings, roads and infrastructure. It should be noted 
that when making external quantitative comparisons, it is crucial to ensure that the chosen 
concepts are aligned.  

2. Landsat image mosaics  

Landsat imagery was used throughout the time series, incorporating data from Landsat 
missions 5, 7, 8, and 9 (see supplementary table ST1). Both Surface Reflectance products 
from each mission were used to compute spectral indices, which were then aggregated 
annually using median values, percentiles, or composite indices (see supplementary ST2).  

Image processing was conducted using annual image collections. For each year, clouds and 
shadows were masked, scale factors were applied. Spectral indices were computed as 
additional bands, based on previous Urban Areas mapping products and existing literature. 
To reduce pixel values within each year into representative values, appropriate statistical 
reducers based on selected percentiles were applied. Additionally, differences between 
percentile values were calculated to capture intra-annual variability. The main processing 
steps were as follows:  

1. Filter Landsat Collection scenes by acquisition date on a yearly basis (from 1985 to 
2024) and spatially constrained to the Brazilian territory.  

2. Mask cloud and cloud shadow pixels in all scenes using quality attributes derived 
from the CFMASK 2 algorithm1,accessed through the QA_PIXEL band.  

3. Scale surface reflectance values were scaled to the 0–1 range by applying the 
provided scale factor (−0.2) and offset (0.0000275) as specified in collections’ bands 
description in each reference page.  

4. Compute selected spectral indices and spectral mixture fractions for each scene 
(see supplementary ST2).  

5. Apply appropriate reducers to each band and index (see supplementary ST2).  

6. Calculate differences between reduced indices to capture intra-annual variability 
(see supplementary ST2).  

7. Composite all processed bands and indices to produce a single annual mosaic.  

The selection of bands and indices for urban area classification was analyzed based on the 
best-performing classification results (see Section “Classification algorithm”).  

1 CFMask is a multi-pass algorithm that uses decision trees to prospectively label pixels in the scene; it 
then validates or discards those labels according to scene-wide statistics. It also creates a cloud 
shadow mask by iteratively estimating cloud heights and projecting them onto the ground. Reference: 
https://www.usgs.gov/core-science-systems/nli/landsat/cfmask-algorithm . 
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3. Classification based on Random Forest algorithm 

Urban areas classification procedures were developed within Google Earth Engine (GEE) 
based on Landsat imagery and Random Forest algorithm covering the Brazilian territory. The 
process was divided into several steps, starting with a definition of a spatial scope, satellite 
imagery, ancillary datasets, and the classification algorithm. This stage was based on 
selecting the optimal features to provide a temporal consistent urban binary annual 
classification from 1985 to 2024. 

3.1. Spatial scope 

This work covers the entire Brazilian territory. However, to avoid unnecessary computation, 
regions with no signs of urbanization were excluded. Polygons where urban areas are likely 
to be found were based on existing census tracts  (IBGE, 2020). The resulting “search area” 
was defined using a grid of hexagons that intersect these features, along with topographic 
sheet codes derived from the World at the Millionth series, scaled to 1:250,000. This regular 
grid, historically adopted by official agencies for national mapping, were used here as 
processing units for organizing the computational workflow for urban area mapping (see 
Figure 2). 

 

Figure 2. Search area and regular sheets (processing tiles). 

a) Brazil. b) Search area - where urban areas can be found. c) Processing units - regular grid defining 
the tiles for processing the classification. 

3.2. Samples collection 

Training samples were obtained from the OpenStreetMap database (OSM, 2021), combined 
with nightlight imagery from NOAA, land cover and land use maps from the Third National 
Inventory (MCTI, 2015), and built-up area maps from the Global Human Settlement Layer 
(GHSL), provided by the Joint Research Centre (JRC) (Corbane et al., 2018). 

First, a preliminary urban mask was generated based on polylines from OpenStreetMap, 
representing roads, streets, sidewalks, and unclassified routes contributed by users. 
Pathways located within urban patches or specific categories (such as residential, service, 
path, and living street) were selected. To refine this initial mask, pathways outside urban 
areas were removed using nightlight imagery (NOAA) (Figure 3). For selected years, 
additional filtering was applied using GHSL built-up maps for 1985 and the urban area 
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mappings from the Third National Inventory (MCTI, 2015) for 1994, 2002, and 2010. Each 
selected pathway was then buffered by approximately 100 meters to define urban candidate 
areas. 

Next, an exploratory classification was conducted using normalized difference indices for 
vegetation (NDVI) and water (NDWI) to mask out vegetated and aquatic regions (Figure 4). 

The final urban mask was derived from the intersection of the filtered OpenStreetMap-based 
mask and the results from the exploratory classification (Figure 5 and Figure 6). The 
non-urban mask was defined as the symmetrical difference of this final urban mask. 

Random points were then generated within the search area of each of the 522 tiles. These 
points were labeled as urban or non-urban using PostGIS, based on the final masks 
(Figure 7), resulting in a labeled dataset of training samples for the years 1985, 1994, 2002, 
2010, and 2018. 

 

Figure 3. Example of filters used on the vector layer of OpenstreetMap in Rio de Janeiro - RJ Brazil. 
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Figure 4. Exploratory classification results for Rio de Janeiro - RJ, Brazil.  

 

Figure 5. Final urban mask for  Rio de Janeiro - RJ, Brazil.  
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Figure 6. Final non urban mask (orange color) for Rio de Janeiro - RJ, Brazil.  

 

Figure 7. Random points divided by urban areas (red) and non-urban areas (blue).  

This method enabled the automatic generation of a large and comprehensive sample 
dataset, totaling 891,427 non-urban and 532,520 urban samples for 1985; 883,101 
non-urban and 453,857 urban samples for 1994; 977,644 non-urban and 546,407 urban 
samples for 2010; and 971,507 non-urban and 614,208 urban samples for 2018. 
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3.3. Classification algorithm  

The Random Forest algorithm implemented in Google Earth Engine (smileRandomForest) 
was applied to map urban areas in MapBiomas Collection 10.0 using training samples of 
urban and non-urban areas. Random Forest parameters were set to 120 trees and 5 
minimum leaf populations. In the Random Forest algorithm, the output mode was set to 
probability, resulting in a classification  image assigning to each pixel its probability of being 
urban.  

Sequential steps were followed to optimize the classification parameters Google Earth 
Engine. Based on a sub-set of the processing units covering Brazilian capitals (a total of 65 
tiles; see Section Spatial scope), sample selection and mosaic refinement were conducted. 
For that, the years of 1985, 1990, 2000, 2010 e 2020 were used. For each year and unit, 
different sample quantities (see section Samples selection) and mosaic compositions (see 
section Feature Space) were analyzed through a Random Forest classification (see section 
Random Forest training and classification) with a view to define adequate parameters to be 
used for the entire Brazilian territory and temporal series. These parameters were assumed 
as the sample’s quantities and mosaic composition with best classification performance. 

Both sample selection and mosaic refinement were guided by the Receiver Operating 
Characteristic (ROC) curve and the Area Under the Curve (AUC) metric (Bradley, 1997; 
Fawcett, 2006). The ROC curve is a graphical representation used to evaluate the 
performance of binary classification models. It plots the True Positive Rate (TPR) against the 
False Positive Rate (FPR) across various threshold values (equations 1 and 2, respectively), 
allowing assessment of the model’s ability to discriminate between urban and non-urban 
areas. The AUC summarizes this performance into a single value: the closer it is to 1, the 
better the model is at distinguishing between the two classes.  

TPR = TP / (TP + FN)  Eq. 1 

FPR = FP / (FP + TN)  Eq. 2 

Where: 

TP = True Positives (urban correctly classified) 

FP = False Positives (non-urban wrongly classified as urban) 

FN = False Negatives (urban wrongly classified as non-urban) 

TN = True Negatives (non-urban correctly classified) 

After defining sample quantities and mosaic composition, a Random Forest classification was 
applied considering the whole time series to generate annual urban classification 
probabilities for each processing grid. These results were subsequently harmonized 
temporarily (from 1985 to 2024, annually, see section Temporal smoothing), and a cutoff 
threshold was estimated per grid to produce a binary classification of urban areas (see 
section Urban areas binary classification). 
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3.3.1. Samples selection 
Sample selection refers to the process of determining the optimal number of urban and 
non-urban samples required for effective classification. The optimal quantity was defined as 
the point beyond which increases in sample size did not yield significant improvements in 
classification accuracy. Based on experimental tests, a range of 30 to 300 randomly selected 
urban samples was evaluated iteratively using a standard mosaic (see supplementary table 
ST3). A fixed class balance of 1:2 (urban to non-urban samples) was adopted, based on prior 
results. 

To calculate the ROC curve, AUC, and additional accuracy metrics for each sample size, a 
separate validation set of 400 urban and 800 non-urban samples (also randomly selected) 
was used.  

Considering the results (see supplementary figure SF. 1), the selected urban samples 
quantity to classify each processing grid were 220 units. Further details of the classification 
process are provided in the section Random Forest training and classification.  

3.3.2. Feature Space 
To support urban classification, several mosaic compositions were evaluated using 
predefined sets of Landsat bands, spectral indices, and spectral mixture components. Each 
mosaic set was tested to identify the most effective combination for classification purposes 
(see supplementary table ST4 for details of each configuration). The evaluated mosaics 
included the following list and their combination: 

● Bands - Composed of the original Landsat spectral bands from the Surface 
Reflectance collection. 

● Indices 1 - Comprising basic indices related to vegetation, water, soil, and urban 
areas, calculated from Landsat Surface Reflectance data. 

● Indices 2 - Included indices derived from thermal band, using Landsat Raw data. 
● Mix 1 - Spectral mixture bands obtained from Spectral Mixture Analysis (SMA) (see 

table ST2 and ST4). 
● Mix 2 - Additional spectral mixture bands (see table ST2 and ST4). 
● Bands used in MapBiomas Collection 9 - complete mosaic as defined in 

supplementary table ST1 complemented with the Automated Water Extraction Index 
(AWEIsh) and the Soil Adjusted Vegetation Index (SAVI). 

The results show that the model performed well even for simpler mosaics (see 
supplementary figure SF. 2). A mosaic similar to what was used in Collection 9 was selected 
for consistency with previous MapBiomas collections. Therefore, the feature space selected 
to characterize Urban Areas for MapBiomas Collection 10.0 is the dataset of urban and 
non-urban points trained with the complete mosaic, with no differences from the one used for 
urban areas of Collection 9 of MapBiomas (see the example of Figure 8 ). 
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Figure 8. Classification example using the selected mosaic. Porto Alegre - RS, Brazil.  

a) Landsat mosaic. b) Classification probability overlaid with the mosaic - The white areas are the 
most probable to be urban. 

Samples selection was used with the assumption that once a point was urban, it remained 
urban for the following years. Therefore, images of 1985 up to 1993 were used to train the 
dataset of 1985, resulting in one feature space per year per tile. Likewise, images of 1994 up 
to 2002 were used to train the dataset of 1994, images of 2003 up to 2009, to train the 
dataset of 2003, images of 2010 up to 2017, to train the dataset of 2010 and images of 2018 
up to 2023, to train the dataset of 2018. 

3.3.3. Random Forest training and classification 
The following Random Forest classification procedures were applied to support sample 
selection, mosaic refinement, and binary classification of urban areas. First, samples were 
based on the processing grid (see Section Spatial scope). To ensure a diverse spectral 
representation and optimize sample availability, the training area for each grid unit was 
defined as its surrounding neighborhood intersecting the previously defined search area. 
Within this area, a subset of available samples was randomly selected for training. 

The model training was implemented using a moving window approach: a block of nine grid 
units (3×3) was used, where the central unit served as the classification target, and the nine 
neighboring units provided the training data (Figure 9). For evaluation purposes, the final 
validation was conducted using MapBiomas validation samples (see MapBiomas website). 
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Figure 9. Processing grid for classification scheme. 

3.3.4. Temporal smoothing 
Following classification using the selected samples and mosaic configuration, the probability 
results were temporally smoothed. This was done by calculating the mean urban 
classification probability over five-year intervals throughout the entire time series. The 
procedure aimed to enhance temporal consistency while simplifying post-classification 
processes. An example illustrating the impact of this approach is presented in Figure 10. 

  

Figure 10. Example of temporal harmonization impact. São José dos Campos - SP, Brazil.  
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3.3.5. Urban areas binary classification 
To produce the final binary classification of urban areas, a thresholding strategy based on 
ROC curve analysis and probability distributions of urban samples was implemented. For 
each processing grid unit and year, the optimal classification threshold was estimated by 
calculating the ROC curve and evaluating the classification probabilities associated with 
urban reference samples. After comparing the results, the value corresponding to the 15th 
percentile of urban sample probabilities was selected as the cutoff for binary classification. 
The only exception was the case of Corumbá municipality, an isolated urban area within the 
Pantanal biome where the cutoff probability value was adopted as 50%. This iterative 
procedure was applied across all grid units and time steps. The final threshold value used for 
each grid was computed as the mean cutoff value derived from the time series, ensuring 
temporal consistency in the classification. This threshold value was then applied to the 
probability smoothed results, finally providing a binary classification of urban areas 
(Figure 11). 

 
Figure 11. Summary of binary classification procedures. 

a) Threshold calculation based on ROC curve and percentiles of urban classification gathered from 
urban samples not used during the classification. b) Example of temporal variation of cut-off values for 
horizontal sets of grids (covering same latitudes). c) Calculation of mean thresholds (both for ROC and 
selected percentile) by grid unit based on time-series results. d) Final cut-off values for each approach. 

4. Post-classification procedures 

Post-classification procedures were developed to improve urban area classification by 
addressing the inherent noise in the temporal remote sensing data, the limitations imposed 
by the 30-meter Landsat spatial resolution, and common confusions among land cover types 
and urban areas (Herold; Liu; Clarke, 2003; Lu; Weng, 2007). These procedures also 
accounted for the typical patterns of urban and settlement configurations in Brazil. The final 
output is a binary raster distinguishing urban from non-urban areas. 
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4.1. Gap fill 

A gap-filling procedure was applied to correct no-data pixels—originating from cloud and 
cloud shadow masking—by replacing them with the most frequent (mode) class value from 
neighboring years within a 3-year temporal window. Assuming classification quality improves 
toward recent years, this filtering is applied backward through time. For boundary years 
(1985 and 2024), the window was adapted to include all available years: for 1985, the years 
1986 and 1987 were used; for 2024, the years 2022 and 2023 were used to fill no-data 
values and maintain temporal consistency. 

4.2. Temporal filter 

Pixels in the time series can exhibit one of three behaviors: a unique transition from 
non-urban to urban, stable urban status throughout, or stable non-urban status throughout. 
The temporal filter is designed to preserve these patterns with minimal interference, ensuring 
that transitions are singular and stable states are consistently maintained over time. 

To operationalize this objective, the following steps were taken: 

(i) Eliminate pixels with values differing from their neighbors within a 5-year window (function 
TempFilter_wMask_5yearsunique): Unique pixel values—urban or non-urban—are identified 
within a 5-year window centered on the target year. If the target year’s value differs from the 
majority of the surrounding years, it is corrected to match the majority. Following the same 
assumption and logic applied in the gap-filling procedure, this filter is applied backward 
through time. For boundary years (1985, 1986, 2023, and 2024), the 5-year window is 
adjusted to include all available neighboring years. 

(ii) Identify breakpoints (function getBreakpoints): For each year, a pixel is classified as 
breakpoints if it: (1) exhibits a valid transition from non-urban to urban in that year; (2) 
remains urban for at least half of the remaining years in the time series; and (3) its urban 
persistence is higher than one, i.e. it is urban for at least one subsequent year. 

- Valid transitions (function getTransitions_valid) are detected by comparing 
classifications between consecutive years (the target year and the previous year). 
Pixels that change from non-urban to urban are marked as valid transitions, assessed 
annually from 1986 to 2024. Pixels classified as urban in 1985 are assumed to 
originate from a valid transition. 
 

- Urban persistence is calculated by pixel, for each year, consisting in the number of 
subsequent years - including the target year - during which the pixel remains 
classified as urban (function getUrbToEnd).  

(iii) Select the first breakpoint and accumulate forward (function accumulateForward): This 
final step iterates, for each pixel, through the time-ordered list of breakpoints to identify the 
first occurrence of a breakpoint. From this point onward, the pixel is consistently classified as 
urban for all subsequent years, ensuring temporal consistency after the initial transition. 

This combination of steps ensures that breakpoints represent sustained and meaningful 
urbanization events rather than noise or transient changes. 
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4.3. Spatial filter 

The spatial filter was developed to reduce commission errors by applying a spatial mask to 
exclude areas unlikely to be urban, and to improve spatial coherence by eliminating small 
holes within urban areas and scattered, sparse settlements. 

To build the spatial mask, high-resolution ancillary datasets were used, including: 

- Index of Roads and Infrastructure v2 (IRS)  (Justiniano et al., 2022): The IRS defines 
urban limits according to roads and infrastructure density, derived from Open Street 
Maps datasets, used with a  threshold of greater than or equal to 500. 

- Urban areas (IBGE, 2022): This is the reference data for urban areas in Brazil, and 
was obtained through visual interpretation of Sentinel-2/MSI imagery (10m of spatial 
resolution for year 2019), supplemented by higher-resolution data where necessary. 
For the spatial mask, all urban classes—including high-density and low-density urban 
areas, and vacant urbanized areas —were included. Polygons classified as “other 
urban equipment,” which typically correspond to areas characterized exclusively by 
non-residential establishments, were excluded. 

- Google Open Buildings v3 (Sirko et al., 2021): Building footprints inferred in May 2023 
from high-resolution (50 cm) satellite imagery. Building polygons with confidence 
≥65% were buffered by 25 meters to better capture the surrounding built-up 
environment and rasterized to match the 30-meter resolution of MapBiomas data. 
Small internal holes (≤5 connected pixels) were filled, and small isolated clusters (≤22 
connected pixels) were removed to reduce noise and enhance spatial coherence. 

- Favelas and urban communities (IBGE, 2020): This dataset, which serves as a basis 
for the most recent Demographic Census of Brazil, was used to complement the other 
datasets, particularly in regions that were underrepresented due to spatial resolution 
or other limitations of the previous datasets. 

All ancillary datasets were converted into binary raster and combined using an inclusive rule: 
a pixel is included in the spatial mask if it is identified as urban in at least one of these 
datasets. This spatial mask was then applied sequentially to the temporal filter for each year, 
excluding areas classified as urban that are likely commission errors—such as bare soil 
within agricultural fields and rocky outcrops. 

The final post-classification step applies filters based on connected pixel counts. For urban 
holes— clusters of non-urban pixels typically corresponding to vegetation patches or vacant 
urban spaces surrounded by urban pixels—  a threshold of 280 pixels (approximately 25 
hectares) is used, according to IBGE’s definition of vacant urban spaces (IBGE, 2022). Areas 
smaller than this threshold are, therefore, incorporated into the urban final classification. 

Conversely, urban noise—defined as isolated small clusters of urban pixels—is reclassified 
as non-urban. An empirical threshold of 44 pixels (approximately 4 hectares) was applied. 
These clusters typically correspond to non-urban structures, such as agricultural buildings, 
infrastructure, or transportation facilities  and were removed. 

The final product of these procedures is a set of annual raster datasets, spanning from 1985 
to 2024, mapping urban areas across the Brazilian territory. This dataset was integrated with 
other thematic maps to compose MapBiomas Collection 10 Land Cover and Land Use. 
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5. Comparison with previous collections 

For each MapBiomas collection, the classification methodology is updated and the entire 
time series is reprocessed, resulting in a recalculation of the mapped class areas. As a 
result, variations in the total mapped urbanized area are expected between collections, as 
illustrated in Figure 12. For Collection 10, the total mapped urbanized area starts at 
approximately 1.80 million hectares in 1985 and increases over time, reaching around 4.55 
million hectares by 2024.  

 
Figure 12. Total urban area (in millions of hectares) mapped by year in MapBiomas Collections 6, 7.1, 

8, 9, and 10 

Figure 12 represents differences between collections, reflecting the evolution of classification 

methodologies over time. Collection 6 stands out as the most distinct, reporting consistently 

higher urbanized areas throughout the time series, especially in the early years, reflecting 

earlier classification methods that tended to overestimate urban areas compared to 

subsequent collections. Collections 7.1 and 8 display very similar trajectories throughout the 

time series, especially in the early years, which aligns with their methodological similarity. 

Collections 9 and 10 also follow closely aligned trends in the initial period (1985–1994), but 

begin to diverge after 1994, with Collection 10 detecting systematically larger urbanized 

areas, particularly in more recent years. It is worth noting that the sharp increase from 1985 

to 1986 observed in all previous collections was corrected in Collection 10, which shows a 

smoother and more gradual transition between these years. 
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A qualitative comparison between Collections 9 and 10 highlights clear improvements in 

spatial detail. As shown in Figure 10, Collection 10 presents a more refined delineation of 

urban areas, particularly along the urban-rural interface. Compared to Collection 9, Collection 

10 more accurately captures the built-up footprint, reducing commission errors in adjacent 

vegetated areas (Figure 13 [A] and [B]). Notably, it also better identifies linear urbanization 

patterns, such as small settlements along roadways, which appear more fragmented or 

underrepresented in Collection 9 (Figure 13 [C] and [D]). 

[A] 

  
[B] 

  
Figure 13. Comparison of urban area mapping between Collections 9 and 10 in two locations: [A] Rio 
de Janeiro (RJ) and [B] Agudo (RS). In each location, yellow represents the urban area mapped in 
Collection 9, and red represents Collection 10.  
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6. Validation Strategies 

6.1. Accuracy Analysis 

Following MapBiomas LULC validation strategy, the error assessment analysis was 
conducted using ~75,000 samples per year, labeled according to MapBiomas LULC classes 
by experts after the visual interpretation of Landsat data, MODIS-NDVI times series, and 
high-resolution imagery from Google Earth (when available). The accuracy analysis was 
based on Stehman (Stehman, 2014; Stehman; Foody, 2019) using the population error 
matrix and the global, user, and producer accuracies. 

The accuracy results are published on the MapBiomas website2 and are reproduced here for 
the Urban Area class in Figure 14 (Producer’s Accuracy) and Figure 15 (User’s Accuracy). 

 

 

 
Figure 14. Producer’s accuracy 

 

 
Figure 15. User’s accuracy 

2 https://brasil.mapbiomas.org/en/estatistica-de-acuracia/colecao-10/ 
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In terms of Producer’s Accuracy, Collection 10 consistently shows the highest values across 
all years, especially from 2000 onwards, maintaining levels above 90%. This reflects a 
significant improvement in minimizing omission errors, meaning urban areas are more 
completely captured compared to earlier collections. For User’s Accuracy, Collection 10 also 
shows consistently high performance but with a slight decreasing trend in recent years. It 
maintains values generally above 85%, which indicates good reliability in minimizing 
commission errors (i.e., reducing the inclusion of non-urban areas as urban). However, the 
highest User’s Accuracy in the early years (1985–2000) is observed in Collections 7.1 and 
8.0, likely due to their more conservative mapping approach. From 2000 onwards, Collection 
10 remains stable, balancing a higher Producer’s Accuracy with good User’s Accuracy. 

Overall, Collection 10 outperforms previous collections in terms of Producer’s Accuracy while 
maintaining competitive User’s Accuracy, demonstrating the effects of methodological 
improvements aimed at reducing omission errors without excessively increasing commission 
errors. 

6.2. Comparison with reference maps 

MapBiomas Collection 10.0 were compared to two urban area maps: (1) the World 
Settlement Footprint (WSF) produced by Deutsches Zentrum für Luftund Raumfahrt (DLR) 
(Marconcini et al., 2020) and (2) Brazil Urbanized Areas produced by IBGE, Instituto 
Brasileiro de Geografia e Estatística (IBGE, 2022). 

WSF is a 10m resolution binary mask outlining the extent of human settlements globally 
derived by means of 2014-2015 multitemporal Landsat-8 and Sentinel-1 imagery, using 
different classification schemes based on Support Vector Machines. It is available at Earth 
Engine Data Catalog3. 

Quantitative analysis (Table 1) indicates that the urbanized area mapped in 2015 by 
MapBiomas Collection 10.0 totals 3,916,797 hectares, surpassing the 3,421,975 hectares 
mapped by the World Settlement Footprint (WSF). The area mapped exclusively by 
MapBiomas amounts to 1,051,152 hectares, while WSF uniquely maps 556,329 hectares. 
Despite these differences, both datasets share a concordant area of 2,865,645 hectares. 
Overall, the overlap between MapBiomas and WSF reaches 83.7% across the Brazilian 
territory. When disaggregated by biome, the Pantanal exhibits the lowest overlap (73.5%), 
while all other biomes show overlaps exceeding 80%. 

Table 1. Comparison of Urban Area Mapping between MapBiomas Collection 10 and the World 
Settlement Footprint -WSF (Marconcini et al., 2020) for the Year 2015. 

Year: 2015 
 
 

Biome 

Total Area 
Mapped by 

Col.  10  
(in ha) 

Total Area 
Mapped by 

WSF  
(in ha) 

Area Only 
Mapped by 

Col. 10 
(in ha) 

Area Only 
Mapped by  

WSF 
(in ha) 

Overlapping 
Area 

 
(in ha) 

Overlap 
Relative to 

WSF  
(in %) 

Amazon 377,062 314,743 116,752 54,433 260,310 82.7% 
Caatinga 521,692 337,433 243,478 59,219 278,214 82.5% 
Cerrado 882,059 737,625 262,030 117,596 620,029 84.1% 
Atlantic Forest 1,997,877 1,898,665 404,553 305,341 1,593,324 83.9% 

3 https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1  
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Year: 2015 
 
 

Biome 

Total Area 
Mapped by 

Col.  10  
(in ha) 

Total Area 
Mapped by 

WSF  
(in ha) 

Area Only 
Mapped by 

Col. 10 
(in ha) 

Area Only 
Mapped by  

WSF 
(in ha) 

Overlapping 
Area 

 
(in ha) 

Overlap 
Relative to 

WSF  
(in %) 

Pampa 133,893 128,935 23,485 18,527 110,408 85.6% 
Pantanal 4,213 4,572 854 1,214 3,359 73.5% 

Brazil 3,916,797 3,421,975 1,051,152 556,329 2,865,645 83.7% 

 

Brazil Urbanized Areas is a visual interpretation of urban features, identified according to the 
elements of specific shape (geometry of objects) and pattern (spatial arrangement), using 
Sentinel 2 imagery, with spatial resolution of 10m, supplemented by higher-resolution data 
where necessary. It is available in shapefile format at IBGE’s website4. The mapped urban 
land use types include: "Urbanized Area," categorized into two classes — high density and 
low density —, "Other Urban Facilities," and "Vacant Urbanized Areas."  

The comparison with IBGE’s 2019 data points to an underestimation of MapBiomas 
Collection 10.0 urban area (Table 2). For the year 2019, the urbanized area mapped by 
Collection 10 totals 4,215,208 hectares, while the Urbanized Areas dataset identifies a larger 
extent of 5,321,060 hectares. The area mapped exclusively by Collection 10 amounts to 
475,366 hectares, whereas Urbanized Areas exclusively accounts for 1,581,219 hectares. 
The overlapping area between the two datasets reaches 3,739,841 hectares. Considering 
the entire Brazilian territory, this represents a 70.3% overlap relative to the total mapped by 
Urbanized Areas. When analyzed by biome, the overlap varies, with the Cerrado (75.4%) 
and Atlantic Forest (70.9%) exhibiting the highest levels of agreement, while the Amazon 
(65.3%) and Caatinga (64.1%) show lower concordance. The Pantanal displays a moderate 
overlap of 69.4%, and the Pampa reaches 69.7%.  

Table 2. Comparison of Urban Area Mapping between MapBiomas Collection 10 and the Urbanized 
Areas (IBGE, 2022) for the Year 2019. 

Year: 2019 
 
 
 
 

Biome 

Total Area 
Mapped by 
Collection  

10  
 

(in ha) 

Total Area 
Mapped by 
Urbanized 

Areas  
 

(in ha) 

Area Only 
Mapped by 
Collection 

10 
 

(in ha) 

Area Only 
Mapped by  
Urbanized 

Areas 
 

(in ha) 

Overlapping 
Area 

 
 
 

(in ha) 

Overlap 
Relative to 
Urbanized 

Areas 
 

(in %) 

Amazon 402,349 567,544 31,828 197,023 370,521 65.3% 
Caatinga 594,173 716,514 134,666 257,007 459,507 64.1% 
Cerrado 950,399 1,101,385 119,443 270,428 830,956 75.4% 
Atlantic Forest 2,124,634 2,738,989 182,877 797,231 1,941,758 70.9% 
Pampa 139,229 190,538 6,355 57,664 132,874 69.7% 
Pantanal 4,423 6,091 198 1,866 4,225 69.4% 

Brazil 4,215,208 5,321,060 475,366 1,581,219 3,739,841 70.3% 

4  
https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15789-areas-urbanizadas.html
?=&t=acesso-ao-produto   
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Supplemental material 

ST. 1. Landsat imagery used in Urban Area mosaics within Google Earth Engine (GEE). 
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Landsat 
Mission, 
Sensor  

Collection, 
Tier Period Level GEE Collection 

ID Bands [wavelength] 

Landsat 5, 
TM 

Collection 
2, Tier 1 

1984 
to 

2012 

Surface 
Reflectance 

LANDSAT/LT05/
C02/T1_L2 

SR_B1: Blue [0.45-0.52 μm] 
SR_B2: Green [0.52-0.60 μm] 
SR_B3: Red [0.63-0.69 μm] 
SR_B4: Near Infrared [0.77-0.90 μm] 
SR_B5: Shortwave Infrared 1 [1.55-1.75 μm] 
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm] 

Raw 
Images 

LANDSAT/LT05/
C02/T1 

B4: Near infrared [0.76 - 0.90 μm] 
B5: Shortwave infrared 1 [1.55 - 1.75 μm] 
B6: Thermal Infrared 1 (resampled from 60m 

to 30m) [10.40 - 12.50 μm] 

Landsat 7, 
ETM+ 

Collection 
2, Tier 1 

 2010  
to  

2016 

Surface 
Reflectance 

LANDSAT/LE07/
C02/T1_L2 

SR_B1: Blue [0.45-0.52 μm] 
SR_B2: Green [0.52-0.60 μm] 
SR_B3: Red [0.63-0.69 μm] 
SR_B4: Near Infrared [0.77-0.90 μm] 
SR_B5: Shortwave Infrared 1 [1.55-1.75 μm] 
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm] 

Raw 
Images 

LANDSAT/LE07/
C02/T1 

B4: Near Infrared [0.77 - 0.90 μm] 
B5: Shortwave Infrared 1 [1.55 - 1.75 μm] 
B6_VCID_1: Low-gain Thermal Infrared 1 

(resampled from 60m to 30m) 
[10.40 - 12.50 μm] 

Landsat 8, 
OLI / TIRS 

Collection 
2, Tier 1 

2013 
 to  

2024 

Surface 
Reflectance 

LANDSAT/LC08/
C02/T1_L2 

SR_B2: Blue [0.45 - 0.51 μm] 
SR_B3: Green [0.53 - 0.59 μm] 
SR_B4: Red [0.64 - 0.67 μm] 
SR_B5: Near Infrared [0.85 - 0.88 μm] 
SR_B6: Shortwave Infrared 1 [1.57 - 1.65 μm] 
SR_B7: Shortwave Infrared 2 [2.11 - 2.29 μm] 

Raw 
Images  

LANDSAT/LC08/
C02/T1 

B5:   Near infrared [0.85 - 0.88 μm] 
B6:   Shortwave infrared 1 [1.57 - 1.65 μm] 
B10: Thermal infrared 1 (resampled from 

100m to 30m) [10.60 - 11.19 μm] 

Landsat 9, 
OLI / TIRS 

Collection 
2, Tier 1 

2021 
 to  

2024 

Surface 
Reflectance 

LANDSAT/LC09/
C02/T1_L2 

SR_B2: Blue [0.45 - 0.51 μm] 
SR_B3: Green [0.53 - 0.59 μm] 
SR_B4: Red [0.64 - 0.67 μm] 
SR_B5: Near Infrared [0.85 - 0.88 μm] 
SR_B6: Shortwave Infrared 1 [1.57 - 1.65 μm] 
SR_B7: Shortwave Infrared 2 [2.11 - 2.29 μm] 

Raw 
Images  

LANDSAT/LC09/
C02/T1 

B5:   Near infrared [0.85 - 0.88 μm] 
B6:   Shortwave infrared 1 [1.57 - 1.65 μm] 
B10: Thermal infrared 1 (resampled from 

100m to 30m) [10.60 - 11.19 μm] 



 

ST. 2. Bands and indices applied for urban areas classification.  

Type Name Description Equations (if applicable) Statistics 

Bands 

BLUE Blue SR_B2 (L8/9), SR_B1 (L5/7) Median 

GREEN Green SR_B3 (L8/9), SR_B2 (L5/7) Median 

RED Red SR_B4 (L8/9), SR_B3 (L5/7) Median 

NIR Near Infrared SR_B5 (L8/9), SR_B4 (L5/7) Median 

SWIR1 Shortwave Infrared 1 SR_B6 (L8/9), SR_B5 (L5/7) Median 

SWIR2 Shortwave Infrared 2 SR_B7 (L8/9), SR_B7 (L5/7) Median 

Urban and Bare 
Soil indices 

NDBI 
Normalized Difference 
Built-up Index (Zha; Gao; Ni, 
2003) 

(SWIR1 - NIR) / (SWIR1 + NIR) Median 

EBBI 
Enhanced Built-up and 
Bareness Index (As-syakur et 
al., 2012) 

((SWIR1 - NIR) / (SWIR1 + NIR + 
RED)^0.5) 

Median, p25, 
p75, p75-p25 

UI Urban Index (Kawamura; 
Jayamanna; Tsujiko, 1997) (SWIR2 - NIR) / ((SWIR2 + NIR) +v1)  Median 

NDRI Normalized difference roof 
index (Santos et al., 2022) (RED - BLUE) / (RED + BLUE) Median 

BAI Bare soil area index (Santos 
et al., 2022) (BLUE - NIR) / (BLUE + NIR) Median 

BU  Built-up Index (ZHA et al., 
2003) NDBI - NDVI Median 

Vegetation indices 

NDVI 
Normalized Difference 
Vegetation Index (Rouse et 
al., 1974) 

(NIR - RED) / (NIR + RED) Median 

EVI Enhanced Vegetation Index 
(Huete et al., 2002) 

2.5 * ((NIR - RED) / (NIR + 6 * RED - 
7.5 * BLUE + 1)) 

Median, p10, 
p90, p90-p10 

EVI2 Enhanced Vegetation Index 
modified 

2.5 * ((NIR - RED) / (NIR + 2.4 * RED 
+ 1)) 

Median, p10, 
p90, p90-p10 

SAVI* Soil Adjusted Vegetation 
Index (Huete, 1988) 

((NIR - RED) / (NIR + RED + 0.5)) * 
1.5 Median 

Water indices 

MNDWI 
Modified Normalized 
Difference Water Index (Xu, 
2006) 

(GREEN - SWIR1) / (GREEN + 
SWIR1) Median 

NDWIm NDWI Modified 
(McFEETERS, 1996) (GREEN - NIR) / (GREEN + NIR) Median 

AWEIsh* 
Automated Water Extraction 
Index – Shadow (Feyisa et 
al., 2014) 

BLUE + 2.5 * GREEN - 1.5 * (NIR + 
SWIR1) - 0.25 * SWIR2 Median 

Bare Soil indices 

BSI Bare Soil index (Rikimaru; 
Roy; Miyatake, 2002) 

((SWIR1 + RED)-(NIR + 
BLUE))/((SWIR1 + RED)+(NIR + 

BLUE)) 
Median 

NBR Normalized Burn Ratio (Key; 
Benson, 2006) (NIR - SWIR2) / (NIR + SWIR2) Median 

NDMI 

Normalized Difference 
Moisture Index, also referred 
as MNWI or NDUI (Gao, 
1996) 

(NIR - SWIR1) / (NIR + SWIR1) Median 

Spectral Mixture 
Analysis (SMA) 
calculated from 

bands  
 
 

GV Green Vegetation 
Endmembers [0.0119, 0.0475, 0.0169, 
0.6250, 0.2399, 0.0675] respective to 

each band  
Median 

NPV Non-Photosynthetic 
Vegetation 

Endmembers [0.1514, 0.1597, 0.1421, 
0.3053, 0.7707, 0.1975] respective to 

each band  
Median 
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Type Name Description Equations (if applicable) Statistics 
['BLUE', 'GREEN', 

'RED', 'NIR', 
'SWIR1', 'SWIR2'] 

 and derived 
indices  

(Souza; Roberts; 
Cochrane, 2005) 

SOIL Bare Soil 
Endmembers [0.1799, 0.2479, 0.3158, 
0.5437, 0.7707, 0.6646] respective to 

each band  
Median 

CLOUD Cloud 
Endmembers [0.4031, 0.8714, 0.7900, 
0.8989, 0.7002, 0.6607] respective to 

each band  
Median 

GVS Shadowed GV GV / (GV + NPV + SOIL) Median 

SHADE Shade abs((GV + NPV + SOIL) - 100) Median 

NDFI 
Normalized Difference 
Fraction Index (mixing 
components) 

(GV - (NPV + SOIL + CLOUD)) / (GV 
+ NPV + SOIL + CLOUD) Median 

Spectral Mixture 
Analysis (SMA) 
calculated from 
bands ['BLUE', 

'GREEN', 'RED', 
'NIR', 'SWIR1', 
'SWIR2'] with 

Global 
Endmemembers 

Components 
(Small; Milesi, 

2013) 

SUBS Substrate (Soil + Built-up) 
Endmembers 

[0.178,0.337,0.458,0.559,0.683,0.645] 
respective to each band  

Median 

VEG Vegetation 
Endmembers 

[0.030,0.060,0.031,0.669,0.240,0.096] 
respective to each band  

Median 

DARK Water + Shade  
Endmembers 

[0.019,0.010,0.005,0.007,0.003,0.002] 
respective to each band  

Median 

 

* Additional indices introduced in Collection 10; all other indices and bands were previously used in 
Collection 9. 

 

25 

https://www.zotero.org/google-docs/?7xYAlx
https://www.zotero.org/google-docs/?7xYAlx
https://www.zotero.org/google-docs/?i36hyi
https://www.zotero.org/google-docs/?i36hyi


 

ST. 3. Standard mosaic used for sample’s quantity analysis. 

Type Band, index name 

Landsat bands BLUE 

GREEN 

RED 

NIR 

SWIR1 

SWIR2 

Vegetation indices NDVI 

EVI 

EVI2 

SAVI 

Water MNDWI 

NDWIm 

AWEIsh 

Urban areas NDBI 

UI 

BSI 

NDRI 

BAI 

EBBI 
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SF. 1. Samples quantity analysis summary.

 

The graphs show sample quantities (x-axis) and selected metrics (y-axis) for each studied 
year. The results refer to the set of grids analyzed for Brazilian capitals.  

ST. 4. Mosaic compositions evaluated (mosaic refinement). 

Set Type Indices list (defined in table ST2) 

Bands Landsat bands BLUE, GREEN, RED, NIR, SWIR1, SWIR2 

Indices 1 Vegetation NDVI, EVI, EVI2 

Water MNDWI, NDWIm, AWEIsh 

Soil, urban NDBI, UI, BSI, 

Indices 2 Soil, urban EBBI 

Mix 1 Spectral 
mixture 1 

GV, NPV, SOIL, CLOUD, GVS, SHADE 

Mix 2 Spectral 
mixture 2 

SUBS, VEG, DARK 

Indices Col. 9 All indices used 
in MapBiomas 
Collection 9 

All indices used in MapBiomas Collection 9 added with 
AWEIsh 
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SF. 2. Mosaic evaluation.

 

The graphs show that different mosaics performed similarly, mainly for the cases 5, 6, 7, and 
9. The mosaic 9 was selected for consistency with previous MapBiomas collections.  
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