
 

 

 
 

 

 

 

 

Mining – Appendix 

 

Collection 10 

 

Version 1 

 

 

 

 

 

 

 

 

 

 

 

General coordinator 
Cesar Guerreiro Diniz 
 
Team 
Arlesson Antonio de Almeida Souza 
Luiz Cortinhas Ferreira Neto 
Maria Luize Silva Pinheiro 

Júlia Ascencio Cansado  



 

1 Overview 
 

Today, Brazil is among the five largest producers of iron ore, niobium, bauxite, and 

manganese in the world (Bray, 2020) , exporting a variety of mineral inputs with a high level 

of purity and internationally recognized quality. Despite its low area representation, mining 

expansion has been rising across the country, reaching ~440,000 hectares in 2023, an 

~8-times higher value than reported in 1985 (~55,000 hectares), according to MapBiomas 

Collection 9.  

Mining mapping in the new Collection 10 carries the same overall method as in 

Collections 9, 8, and 7 in most of Brazil’s territory. It includes updates on the quantity and 

quality of the training samples, and a larger number of activation grids were used in the 

processing steps of the mining recognition algorithm. In addition, in Collection 10, the 

sampling, training, and prediction were performed separately for each Brazilian biome. The 

method still uses U-Net (Ronneberger et al., 2015), a CNN detection based on Deep 

Learning. However, Collection 10 is composed of six U-Nets, each targeting a specific 

Brazilian biome. 

The stack of reference data now includes information from additional sources: CPRM 

(Brazilian Geological Service), AhkBrasilien (Brazil-Germany Chamber of Commerce and 

Industry), INPE (National Institute for Space Research), ISA (Instituto Socioambiental), and 

AMW (Amazon Mining Watch). Details regarding the segmentation process are described 

below in Figure 1 and on GitHub: 
 https://github.com/mapbiomas/brazil-mining/tree/mapbiomas10.  

 
Figure 1 – Processing diagram. The steps related to image processing are in blue. The steps in green are related to the 
sample design. Segmentation procedures are in yellow. The accuracy assessment phase is in red. BQA stands for Band 
Quality Assessment. (1) Range from 1985 to 2024. 

 

https://github.com/mapbiomas/brazil-mining/tree/mapbiomas10


 

2 Landsat Mosaics 
 

The segmentation of the cross-cutting theme “Mining” uses Landsat “Top of 

Atmosphere—TOA” mosaics, which differ from the “Surface Reflectance—SR” processing 

level used in the land use and land cover segmentation of the Brazilian biomes. The Landsat 

mosaics prepared for the mining mapping were cropped to comprise areas where mining 

sites are known to exist. These mosaics are the third generation of the methodology 

developed specifically for these cross-cutting themes.  

The annual cloud-free mosaics were generated in the Google Earth Engine (GEE) 

platform, with all raster data and sub-products derived from the United States Geological 

Survey (USGS) Landsat Collection 2 Tier 1 Top of Atmosphere (TOA) imagery, which includes 

Level-1 Precision Terrain (L1TP). 

 

2.1 Temporal coverage  

 

  The annual cloud-free composites used in the mining segmentation are generated by 

calculating the median pixel value of all images available in the GEE image collection from 

January 1 to December 31 of each year.  

 

2.2 Mosaic Subsets 
2.2.1 Mining 
 

For each year, Landsat Collection 2, Tier 1, TOA data were used to produce annual 

cloud-free composites of imagery acquired from January 1st to December 31st. The quality 

assessment (QA) band and a median filter remove clouds and shade from the imagery. QA 

values improve data integrity by indicating which pixels might be affected by artifacts or 

subject to cloud contamination. In addition, we use a GEE function that gets the median 

pixel value of an image stack (i.e., the entire image collection available for a predefined area 

and dates of interest). This function rejects values that are too bright (e.g., clouds) or too 

dark (e.g., shadows), returning the median pixel value (of all images available in our stack) in 

each band for each year of our time series. Then, the annual mosaics were clipped to grid 

polygons that are known to have mining activity according to our reference dataset, and 

large areas where these activities are not expected to occur were excluded. 

 

2.2.2 Reference Data 
 

Brazil, especially the Brazilian Amazon (BA), has many publicly available datasets, 

from geological surveys and change detection platforms to deforestation early-warning 

systems. Mining data availability is highly diverse in scale, type, and timeframe. Spatially 

explicit data may be found at a higher or lower resolution, with a greater or lesser degree of 

human intervention, for scientific or journalistic use, but from which a great set of spatial 



 

references of artisanal and industrial mining sites can be acquired/inferred. The reference 

dataset used in our segmentation comprises multiple data sources: Deter-B 

(http://terrabrasilis.dpi.inpe.br/), MapBiomas Alert (http://alerta.mapgiomas.org), RAISG 

(http://www.amazoniasocioambiental.org),  ISA (https://www.socioambiental.org/), 

CPRM-GeoSGB (https://geosgb.cprm.gov.br/), Ahkbrasilien 

(https://www.ahkbrasilien.com.br/), AMW (https://amazonminingwatch.org/), and 

additional visual interpretations.  

 
Table 1 – Reference data used in our products. References were visually analyzed and converted to bounding boxes.  

Class References 

Mining Deter: http://terrabrasilis.dpi.inpe.br/ 
MapBiomas Alert: http://alerta.mapgiomas.org 
RAISG: http://www.amazoniasocioambiental.org 
ISA: https://www.socioambiental.org/ 
CPRM-GeoSGB: https://geosgb.cprm.gov.br/ 
Ahkbrasilien: https://www.ahkbrasilien.com.br/ 
AMW: https://amazonminingwatch.org/ and  
Additional visual interpretations 

 

Reference data were visually analyzed and converted to bounding boxes (Figure 2), 

which were overlaid on grids used to process the deep-learning mining recognition 

algorithm in a parallel fashion. In Figure 2, the grids used in Collection 10 are in yellow. The 

number of searching grids has increased compared to the previous collection. 

 

 
Figure 2—Reference sites are in red. The yellow grids are present exclusively in Collection 10.  
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3 Segmentation 
 

In Collection 10, the U-net classifier was retained, but its implementation was 
restructured. Pixel-wise classification between mining and non-mining areas now 
incorporates statistical techniques such as majority voting and biome-specific 
regionalization. For each biome, five U-net models—trained over different epochs—are 
combined to generate the final classification. The class receiving the highest number of 
votes across the models (majority voting) is assigned as the final label on the map. 

The semi-automatic segmentation of Landsat mosaics was performed entirely on 
local servers. Once the sample collection is finished, the U-net segmentation results in the 
pre-filtered segmentation product. The segmented data is injected back into GEE, where 
spatial-temporal filters and visual inspection occur (Figure 3). 

 

 
Figure 3 - Mining Detection Earth Engine-TensorFlow pipeline. The process is structured in 4 steps. First (1), GEE generates 
the cloud-free composites and creates the initial training dataset. Second (2), the mosaics and training data are 
downloaded and stored locally. Three (3) initiate patch-wise training and segmentation. In the fourth step (4), the 
segmented product is spatially and temporally filtered. The filtered product is visually and statistically inspected. Multiple 
iterations may be used until a satisfactory spatial and temporal quality is achieved. 

 

3.1 Segmentation scheme 

For the supervised segmentation of the Landsat mosaics, we selected training 
samples (geometries) from the previously generated bounding boxes (grids). Like any 
supervised algorithm, our U-net-based approach depends on human-labeled training data, 
categorized as mining (Mi) and non-mining (N-Mi). Guided by the reference dataset, the 
mining and non-mining samples are visually delineated. It is essential to highlight that no 
differentiation was made between artisanal and industrial mining samples. Therefore, from 
this point on, every time mining samples or classes are mentioned, it includes both artisanal 
and industrial patterns. The dissociation between such patterns, garimpo or industrial, and 
the exploited main substance results from post-segmentation and visual analysis.  

Collection 9 testified to the necessity of observing each Brazilian biome more closely 
regarding the mining presence. Therefore, in Collection 10, the training samples were 
collected following the Brazilian biomes' subdivision, aiming to better characterize the 
mining activity within each biome. Table 2 presents the parameters used in each U-net 
instance.  

 



 

Table 2 - Model attributes and segmentation parameters. In total, six (6) distinct attributes were used. 

Parameters Values 

Model U-Net 
Patch Size 256 x 256 px 
Optimizer Nadam 

Learning Rate 5 x 10⁻⁶ 

Samples 

Biome Train Validation 

Amazon 54777 15015 
Atlantic Forest 100000 20000 

Cerrado 21170 5790 
Caatinga 42400 9600 
Pampas 23552 9598 
Pantanal 6400 2400 

Attributes Green, Red, Nir, Swir 1, NDVI & MNDWI 
Output Mining and Not-Mining 

 

Once the sample collection and the U-net segmentation are done, the segmented 
data is injected back into GEE, where spatial-temporal filters and visual inspection occur. This 
phase was undertaken to correct segmentation errors and evaluate the need to collect (or 
not) additional training samples.  

 

4 Mining Class, Mining Type, and Main Substances 
 

Since Collection 6, the MapBiomas Platform has had a specific mining-related 

module. Thus, it is crucial to understand each mining-related product's origin. In this sense, 

the U-Net model performs pattern recognition of a mining site, regardless of its nature or 

primary substance, in a binary final output fashion [mining (Mi) and non-mining (N-Mi)], as 

previously explained.  

Once the mining class is noise-filtered, the final version is integrated as a layer in the 

MapBiomas LULC data, corresponding to the class ID “30”. Then, the mining raster data 

intersects with the CPRM-GeoSGB dataset, from which the attributes of substances (Gold, 

Iron, Silver, Copper…) and extraction type (garimpo or industrial) are extracted. Thus, the 

recognition of mining sites is U-Net-related. 

On the other hand, categorizing its nature/type or main substances results from a 

spatial operation involving a third-party reference dataset, as shown in Figure 4.  

 



 

   

 
Figure 4 - The dots are the CPRM-GeoSGB dataset. The Yellow pixels represent the mining class. The recognition of the mine 

nature and the main mined substances is the resultant aggregation of both datasets. 

 

The product published on the Mining Module aggregates both attributes in a 

three-digit identifier (“class_id”), resulting in the information in Table 3.  

 

 

 



 

Table 3—The product published on the Mining Module aggregates both attributes in a three-digit identifier (“class_id”). In 
Collection 10, identifier 130 appears for the first time as a “class_id” due to adding a  Zinc industrial extraction site. 

class_id level_1 level_2 level_3 
101 2. Industrial 2.2 Metallics Metallics 
102 2. Industrial 2.2 Metallics 2.2.01 Iron 
103 2. Industrial 2.2 Metallics 2.2.02 Manganese 
104 2. Industrial 2.2 Metallics 2.2.03 Nickel 
105 2. Industrial 2.2 Metallics 2.2.04 Asbestos 
106 2. Industrial 2.2 Metallics 2.2.05 Molybdenum 
107 2. Industrial 2.2 Metallics 2.2.06 Titanium 
108 2. Industrial 2.2 Metallics 2.2.07 Chromium 
109 2. Industrial 2.2 Metallics 2.2.08 Copper 
110 2. Industrial 2.2 Metallics 2.2.09 Aluminum 
111 2. Industrial 2.2 Metallics 2.2.10 Magnesium 
112 2. Industrial 2.2 Metallics 2.2.11 Barium 
113 2. Industrial 2.2 Metallics 2.2.12 Niobium 
114 2. Industrial 2.2 Metallics 2.2.13 Tin 
115 2. Industrial 2.2 Metallics 2.2.14 Gold 
130 2. Industrial 2.2 Metallics 2.2.30 Zinc 
116 2. Industrial 2.3 Non-Metallics Non-Metallics 
117 2. Industrial 2.3 Non-Metallics 2.3.01 Class 2 Minerals 
118 2. Industrial 2.3 Non-Metallics 2.3.02 Fluorine 
119 2. Industrial 2.3 Non-Metallics 2.3.03 Phosphorus 
120 2. Industrial 2.3 Non-Metallics 2.3.04 Graphite 
121 2. Industrial 2.3 Non-Metallics 2.3.05 Silicon 
122 2. Industrial 2.3 Non-Metallics 2.3.06 Limestone 
123 2. Industrial 2.4 Precious Stones & 

Ornamental Rocks 
Precious Stones & Ornamental 
Rocks 

124 2. Industrial 2.4 Precious Stones & 
Ornamental Rocks 

Precious Stones 

125 2. Industrial 2.4 Precious Stones & 
Ornamental Rocks 

Ornamental Rocks 

126 2. Industrial 2.1 Energetics Energetics 
127 2. Industrial 2.1 Energetics 2.1.01 Mineral Coal 
128 2. Industrial 2.1 Energetics 2.1.02 Uranium 
129 2. Industrial 2.1 Energetics 2.1.03 Natural Gas and Petroleum 
214 1. Garimpo 1.1 Metallics 1.1.02 Tin 
215 1. Garimpo 1.1 Metallics 1.1.01 Gold 
216 1. Garimpo 1.2 Non-Metallics Non-Metallics 
217 1. Garimpo 1.2 Non-Metallics 1.2.01 Class 2 Minerals 
223 1. Garimpo 1.3 Precious Stones & 

Ornamental Rocks 
Precious Stones & Ornamental 
Rocks 

224 1. Garimpo 1.3 Precious Stones & 
Ornamental Rocks 

1.3.01 Precious Stones 

225 1. Garimpo 1.3 Precious Stones & 
Ornamental Rocks 

1.3.02 Ornamental Rocks 



 

5 Post-segmentation 
 

Due to the segmentation method's pixel-based nature and the very long temporal 

series, a chain of post-segmentation filters was applied to reduce the salt-and-pepper effect 

and add spatiotemporal consistency. The post-segmentation process includes the application 

of the following filters: gap-fill, temporal, spatial, and frequency. 

 

5.1 Gap-Fill filter  

 

The post-processing steps start by filling in possible no-data values. In a long-time 

series of severely cloud-affected regions, such as forested areas of tropical countries, pixels 

with no-data values are expected to be present in median composite mosaics. The gap-fill 

filter replaces the no-data values (e.g., image “gaps”) with a valid pixel from the nearest date 

available. In this procedure, if no “future” valid class is available, the no-data value is 

replaced by the nearest previous valid class. Up to three prior years can fill in persistent 

no-data pixels. Therefore, gaps should only exist if a given pixel has been permanently 

segmented as no-data throughout the entire temporal series. A year mask was built to track 

pixel temporal origins, as shown in Figure 5. 

 

 

Figure 5 – Gap-filling filter mechanism. The following valid pixel data replaces existing no-data values. If no “future” valid 

position is available, then the no-data value is replaced by its previous valid value based on up to a maximum of three (3) 

prior years. To keep track of pixel temporal origins, a “year” mask was built. 

 

5.2 Temporal filter 

 

Next, we applied a temporal filter that uses sequential segmentation in a 3-year 

unidirectional moving window to identify temporally non-permitted transitions. Based on a 



 

single generic rule (GR), the temporal filter, inspects the central position of three 

consecutive years (“ternary”). It changes its value if it differs from the first and last years in 

the ternary, which must have identical classes. The central year of the ternary is then 

remapped to match its temporal neighbor class, as shown in Table 4. 

 
Table 4 - The temporal filter inspects the central position for three consecutive years, and in cases of identical extremities, 

the center position is remapped to match its neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3), 

respectively. GR means “generic rule,” while Mi and N-Mi represent mining and non-mining pixels. 

Rule    Input (Year)   Output    
 T1 T2 T3 T1 T2 T3 
GR Mi N-Mi Mi Mi Mi Mi 
GR N-Mi Mi N-Mi N-Mi N-Mi N-Mi 
       

5.3 Spatial filter 

 

Then, a spatial filter was applied to avoid unwanted modifications on the edges of 

grouping pixels (clusters) by using the “connectedPixelCount” function. Native to the GEE 

platform, this function locates connected components (neighbors) that share the same pixel 

value. Thus, only pixels that do not share connections to a pre-defined number of identical 

neighbors are considered isolated, as shown in Figure 6. This filter needs at least ten 

connected pixels to reach the minimum connection value. Consequently, the minimum 

mapping unit is directly affected by the spatial filter applied, which was defined as 10 pixels 

(~1 ha). 

 

Figure 6 – The spatial filter removes pixels that do not share neighbors of identical value. The minimum connection value 

was 10 pixels. 

5.4 Frequency filter 

 

The last post-processing filter step is the frequency filter. This filter considers the 

frequency of a given class throughout the entire time series. Thus, all class occurrences with 

less than 10% temporal persistence (3 years or fewer out of 37) are filtered out and 

incorporated into the non-class binary. This mechanism reduces the temporal oscillation in 



 

the segmentation, decreases the number of false positives, and preserves consolidated 

classes. 

 

5.5 Integration with biomes and cross-cutting themes 

 

After applying the post-processing filters, we integrate the cross-cutting themes and 
the Biomes data into a single raster dataset. This integration is guided by a set of specific 
hierarchical prevalence rules (Table 5). The resulting output is a final land cover/land use 
map for each region of the MapBiomas project. 

The top position classes in the prevalence rank are related to coastal ecosystems (such 
as mangroves, beaches, dunes, and sand spots; aquaculture) and anthropogenic land use 
(i.e., mining and urban infrastructure) present throughout the country (Table 5).  

 
Table 5 - Prevalence rules for combining the output of digital segmentation with the cross-cutting themes in 
Collection 10. 

 
Class Pixel Value Prevalence Exception 

Mining 30 1 
Urban Infrastructure on MG 

state 
Beach, Dune, and Sand Spot 23 2  
Mangrove 5 3  
Aquaculture/Salt-Culture 31 4  
Hypersaline Tidal Flat 32 5  

Coastal Reefs 69 -  
* Coastal reefs are not 

integrated into the same map 
 

 

6 Error/Accuracy Assessment 
 

 Once all classes from the Mining theme constitute a rare population concerning its 

distribution throughout Brazil’s territory, the error assessment strategy must rely on a 

sample design specifically focused on that matter. The error assessment of rare classes is 

under development and will soon be available.   
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