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1 Overview 
 
The Brazilian coastal zone presents diverse environments that evolved during the 

Quaternary in response to climate and sea-level changes. These environments show an 

interaction between different sediment supplies and a geologic heritage that dates back to 

the breakup of South America and Africa (Dominguez, 2009; Souza-Filho et al., 2023). 

Among this diversity of coastal features, five classes are mapped in the MapBiomas 

Collection 10: Mangroves, Beaches, Dunes and Sand Spots, Aquaculture, Hypersaline Tidal 

Flats, and Shallow Coral Reefs.   

Table 1 shows the evolution of coastal features mapped in each collection and the 

changes in its methodological aspects. 
Table 1 - Overview of the Coastal MapBiomas Collections since their first version. In the method column, ‘EDT’ means 
‘Empirical Decision Tree,’ RF refers to ‘Random Forest,’ and U-Net refers to a CNN-based Deep-Learning method. 

Collection Range Method Classes Improvements 
1.0 2008-2015 EDT No Coastal-Specific Mappings - First collection 
2.0 2000-2016 EDT Mangroves, Beaches & 

Dunes 
- First two coastal classes 

2.3 1985-2016 EDT Same as Collection 2.0 -- 
3.0 1985-2017 RF Mangroves, Beaches & 

Dunes 
- Random Forest 
- Temporal stability is used to 
generate a large training dataset 
-  Expanded to the entire Landsat 
Temporal Series 
- Better Quality Median 
Composites 

3.1 1985-2017 RF Same as Collection 3.0 -- 
4.0 1985-2018 RF and U-net Mangroves, Beaches, and 

Dunes, Aquaculture 
- Aquaculture/Salt-culture is added 
as a coastal feature 
- Improvements in temporal 
consistency through additional 
post-processing/ filters 

4.1 1985-2018 RF and U-net Same as Collection 4.0 -- 
5.0 1985-2019 RF and U-net Mangroves, Beaches & 

Dunes, Aquaculture, 
Hypersaline Tidal Flats  

- Hypersaline Tidal Flats are added 
as a coastal feature (also known as 
“Apicum”) 

6.0 1985-2020 RF and U-net Mangroves, Beaches, Dunes 
and Sand-Spots, Aquaculture, 
Hypersaline Tidal Flats  

- Sand Spots is now a feature that 
integrates Beach and Dune, coastal 
class  

 
7.0 1985-2021 RF and U-net Same as Collection 6 - A new version of the U-net 

classifier.  
7.1 1985-2021 RF and U-net Same as Collection 7 -- 
8.0 1985-2022 RF and U-net Same as Collection 7.1 - Enhancements of the 

Deep-Learning Algorithms 
- Enhancements in temporal 
consistency through additional 
post-processing/ filters 

9.0 1985-2023 RF and U-net Mangroves, Beaches, Dunes 
and Sand-Spots, Aquaculture, 
Hypersaline Tidal Flats and 
Shallow Coral Reefs 

- Shallow Coral Reefs are added as 
a coastal feature  



 

10.0 1985-2024 RF and U-net Same as Collection 9 - Aquaculture is now being 
mapped throughout Brazil, not 
only in Coastal Zone 
- Resampling of Beach, Dune and 
Sand Spots 
 

 

Compared to Collection 8, Collection 9 of the coastal zone mapping presents a new 

class of coastal features, the Shallow Coral Reefs, here defined as “an underwater ecosystem 

characterized by reef-building corals, formed of colonies of coral polyps held together by 

calcium carbonate” (Ferreira and Maida, 2006). Most coral reefs are built from stony corals, 

whose polyps cluster in groups. However, small methodological changes were made. Two 

machine learning techniques were used: Mangrove, Beach, Dunes and Sand Spots, Shallow 

Coral Reefs based on Random Forests, and Aquaculture and Hypersaline Tidal Flat are U-net 

derived. In Collection 9, the “Apicum”/Hypersaline Tidal Flat theme gained its third 

generation of the U-Net learning model, which helped reduce its area oscillation and 

commission and omission errors.  

In the newest Collection (10), Aquaculture has been mapped throughout the whole 

country, not only on the Coastal Zone, and Beaches, Dunes and Sand Spots has been 

resampled, aiming to fix some issues the class had with the limits used in the integration 

process in the previous collections, which cropped parts of it. 

The classification/segmentation, validation, and publication workflow is described in 

Figure 1.  The code repository can be accessed: 

● Aquaculture: https://github.com/mapbiomas/brazil-aquaculture  

● Coastal Zone: https://github.com/mapbiomas/brazil-coastal-zone 

 

 
Figure 1 - Workflow of Coastal Zone mapping, validation, and publication. All data processing occurs within the Google Earth 
Engine - GEE platform, except for the aquaculture/saline pattern and hypersaline tidal flats segmentation, dependent on the 
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TensorFlow library. In green are steps related to sampling design. In yellow are steps related to classification. The mapping 
accuracy evaluation stage is in red. (1) Range from 1985 to 2024. 

 

2 Landsat image mosaics 
 

The cross-cutting theme “Coastal Zone” classification used Landsat mosaics that differed 

from those used to classify the natural vegetation of the Brazilian biomes. The coastal 

mosaics were defined to preserve the maximum of the coastal zone land area while 

capturing the minor possible cloud cover. These Landsat mosaics are the third generation of 

the methodology developed specifically for these cross-cutting themes. 

 

2.1 Definition of the temporal period 

 

 Coastal areas are severely affected by atmospheric nebulosity, intensified by their 

proximity to the oceans and tropical locations. On the other hand, the attempt to identify a 

time interval that covers only the driest season of the year as an alternative to reduce cloud 

persistence severely reduces the number of images available to cover the entire coastal 

region. Thus, the annual cloud-free composites are generated, ranging from the 1st of 

January to the 31st of December. 

 

2.2 Mosaic Subsets 
 

Since the Brazilian coastal zone (BCZ) is an extensive region, approximately 8,500 

kilometers from Oiapoque to Chui (not taking reentrances into account), and affected by 

various atmospheric systems with lesser or greater nebulosity influence, the BCZ is divided 

into seven different sectors (Figure 2).  

 

 



 

 
Figure 2 (LEFT) - The seven Brazilian Coastal Zone sectors used for mosaic subsets and image classification. Sector 1 - Amapá 
(AP), coastal region of Amapá. Sector 2 - Marajó Island (MAR), coastal region of Marajó Island. Sector 3 - Pará / Maranhão 
(PAMA), a coastal sector of the states of Pará and Maranhão. Piauí / Bahia (PIBA) is a coastal sector of the states of Piauí to 
Bahia. Sector 5 - Espírito Santo / São Paulo (ESSP), a region that includes the states of Espírito Santo  and São Paulo. Sector 6 
– Paraná/Laguna (PRLA), a coastal area that goes from the state of Paraná to the municipality of Laguna in Santa Catarina, 
and finally, Sector 7 (LARS), a region that ranges from Laguna to the state of Rio Grande do Sul.  (RIGHT) - Search areas used 
for Aquaculture class, based on São José et al. (2022). 

 

2.3 Image selection 

 

Since the MapBiomas Collection 2.3, substituting the "Simple Cloud Score" method 
used in previous collections, the cloud/shadow removal script started to combine the 
Landsat QA band values and the GEE median reducer. In Landsat Collection 2 Tier 1 data, 
each pixel in the QA band contains unsigned integer values representing specific surface, 
atmospheric, and sensor conditions that may affect the overall usefulness of a given pixel. 
When effectively used, QA values can improve the data integrity by indicating which pixels 
might be affected by instrument artifacts or subject to cloud contamination (USGS, 2017). In 
conjunction, GEE can be instructed to pick the median pixel values in a stack of images. By 
doing so, GEE rejects values that are too high (e.g., clouds) or too low (e.g., shadows) and 
picks the median pixel value in each band over time. This operation has improved over 
several collections, and it is possible to see the difference between two "cloud-free 
composites" from different collections below (Figure 3). 



 

 

Figure 3 - Left, MapBiomas Collection 2 “cloud-free composite.” Right, MapBiomas Collection 10 “cloud-free composite.” 

2.4 Final quality  

 

The mosaic quality is related to Landsat’s cloud-free availability during the image 

selection period. However, from 1985 to March 1998, only the Landsat 5 satellite remained 

operational. The BCZ's average number of images per year was ~500 during this period. In 

the last decade, between 2015 and 2024, this figure quadruple to ~2200 images per year, as 

shown in Figure 4.  

 
Figure 4 – Landsat image availability from 1985 to 2024. The bars show the distribution of Landsat images along the time 
series. 

3 Detection 
 

The automatic classification of the Landsat mosaics was mainly performed on the 

Google Earth Engine platform, based on the Random Forest classifier (Breiman, 2001). The 

Hypersaline Tidal Flat and the Aquaculture classes were deep-learning derived and thus 

segmented on local environment. 

 



 

3.1 Detection scheme 

 

Each class was mapped separately as a binary variable. Therefore, five independent 
detection processes were performed: 1) Mangrove, 2) Beaches and Dunes and Sand Spots, 
3) Hypersaline Tidal Flats , 4) Aquaculture, and 5) Shallow Coral Reefs. The mapping process 
was carried out considering only two possible classes for each pixel: the interest class 
(Mangrove, Beaches, Dunes and Sand Spots, Hypersaline Tidal Flat (HTF), Aquaculture, and 
Shallow Coral Reef) or the non-interest class (all the non-classes of each target of interest). 

We have selected training points based on the availability of reference maps and the 
previous MapBiomas Collection. The following sections present the details of the 
parameters used in the image classifiers, the reference maps used for each interest class, 
and the feature space produced for each classification. 

 

3.2 Reference Data 

 

A dataset of reference data was used to guide the generation of training samples for 
each class. Table 2 shows the references used for each of the coastal zone classes. 

 

Table 2 - Reference datasets to guide training samples of coastal zone classes in Collection 9. 

Class References 

Mangrove MapBiomas Collection 8, Giri et al., 2011, ICMBio 
Mangrove Attlas (ICMBio, 2018), Global Mangrove 
Watch (Bunting et al., 2018; Thomas et al., 2018), Diniz 
et al., 2019, Panorama da Conservação dos Ecossistemas 
Costeiros e Marinhos no Brasil (MMA, 2010), plus visual 
inspection. 

Aquaculture/Salt-Culture MapBiomas Collection 8, Atlas Dos Remanescentes 
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020), 
Barbier and Cox, 2003; Guimarães et al., 2010; Prates, 
Gonçalves and Rosa, 2010, Queiroz et al., 2013; Tenório 
et al., 2015; Thomas et al., 2017, Diniz et al., 2021, São 
José, F. F. de et al., 2022, plus visual inspection 

Apicum/Hypersaline Tidal Flat  MapBiomas Collection 8, Atlas Dos Remanescentes 
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020), 
Prates, Gonçalves and Rosa, 2010, Panorama da 
Conservação dos Ecossistemas Costeiros e Marinhos no 
Brasil (MMA, 2010), plus visual inspection. 

Beaches, Dunes and Sand Spots MapBiomas Collection 8, Atlas Dos Remanescentes 
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020), 
Prates, Gonçalves and Rosa, 2010, Panorama da 
Conservação dos Ecossistemas Costeiros e Marinhos no 
Brasil (MMA, 2010), plus visual inspection. 



 

Shallow Coral Reef Áreas Prioritárias para Conservação da Biodiversidade 
(MMA), Panorama da Conservação dos Ecossistemas 
Costeiros e Marinhos no Brasil (MMA, 2010), Atlas dos 
Recifes de Corais nas Unidades de Conservação 
Brasileiras (MMA), Allen Coral Reef Atlas, and 
UNEP-WCMC Global Distribution of Coral Reefs. 

 

3.3 Coastal Zone Feature Space  

 

Tables 3 and 4 show all spectral indices and bands used for the BCZ detection.  
 

Table 3 – Spectral Indices used for coastal zone classification. 

Index Expression 
Reducer 

Reference 

EVI2  2.5 * ((NIR - RED) / (NIR + 2.4*RED + 1)) 
Median and Standard 

Deviation 
Liu and Huete, 1995 

NDVI (NIR - RED) / (NIR + RED) 
Median and Standard 

Deviation 
Tucker, 1979 

MNDWI (GREEN - SWIR1) / (GREEN + SWIR1) 
Median and Standard 

Deviation 
Xu, 2006 

NDSI (SWIR1 - NIR) / (SWIR1 + NIR) 
Median and Standard 

Deviation 
Rogers and Kearney, 
2004 

MMRI Modular Mangrove Recognition Index 
Median and Standard 

Deviation 
Diniz et al., 2019 

GBNDVI  The Green Blue NDVI 
Median and Standard 

Deviation 
Wang et al., 2007 

GRNDVI The Green Red NDVI 
Median and Standard 

Deviation 
Wang et al., 2007 

GARI 
Green Atmospherically Resistant 
Vegetation Index 

Median and Standard 
Deviation 

Gitelson et al., 2003 

CI Coloration Index 
Median and Standard 

Deviation 
Escadafal et al., 1994 

 

 

 

Table 4 - Table of bands used to classify coastal zone classes. 

Variable Description Reducer 

GREEN Landsat Green band median value 
Median and Standard 
Deviation 

RED Landsat Red band median value 
Median and Standard 
Deviation 

NIR Landsat NIR band median value  
Median and Standard 
Deviation 

SWIR1 Landsat SWIR1 band median value 
Median and Standard 
Deviation 



 

SWIR2 Landsat SWIR2 band median value 
Median and Standard 
Deviation 

 

 

3.4 Detection strategy, training samples, and parameters 

 

  When reference maps that match the classes and/or year to be mapped, reference 

maps of the closest possible timeframe to the median composites were used. When no 

reference map was available, then the detection results of the previous year were used for 

subsequent training. Tables 5 and 6 show the Random Forest and U-net parameters used to 

detect each one of the years.  

 
Table 5 - Random Forest parameters used to classify each one of the years. Mangroves, beaches, dunes, sand spots, and 

shallow coral reefs. 

Parameter Value 

Number of trees 100 

Samples 50000 (non-target), 5000 (target) 

Classes 2 (binary classification) 

 

Table 6—U-Net parameters used to segment each year. The U-Net-derived classes are the aquaculture and HTF classes. 

Parameter Value 

Model U-Net 

Patch Size 256 x 256 px 

Optimizer Nadam 

Learning Rate 5 x 10⁻⁶ 

Samples Aqua: 34600 (train), 14200 (validation) | HTF: 47700 (train), 13355 (validation) 

Attributes Green, Red, Nir, Swir 1, NDVI, MNDWI  

Output binary segmentation 

3.4.1 Mangroves 
 

As with any supervised method, the Random Forest classifier must rely on a training 

dataset. For mangrove cover recognition, the training data was obtained from MapBiomas 

Collection 8, Giri et al., 2011, Atlas dos Manguezais do Brasil (ICMBio, 2018), Global 

Mangrove Watch (Bunting et al., 2018; Thomas et al., 2018) and visual inspection (Figure 5). 

The consolidated results of the mangrove distributions are available in Diniz et al., 2019.   

 



 

 
Figure 5 - Global Mangrove Cover data was used as a mangrove mapping reference from 1999 to 2002. 

 

3.4.2 Hypersaline Tidal Flat 
 

Generally, a mangrove swamp's less frequently flooded area, in the transition to 

topographically elevated lands, is usually devoid of arboreal vegetation. This area is called 

“Apicum” in Brazil. In the international scientific literature, this transition zone is usually 

called hypersaline tidal flat. As shown in Table 1, three different reference maps were here 

used: the “Atlas dos Remanescentes Florestais da Mata Atlântica” (SOS Mata Atlântica, 2020) 

from 2019/2020, covering the Mata Atlantica coastal region and the “Carta de Sensibilidade 

Ambiental ao Óleo - Pará-Maranhão-Barreirinhas” referent to 2017 and covering most of the 

Brazilian north coastal area and the data from the MapBiomas Collection 8 (Figure 6). 

 

 

Figure 6 – Apicum reference maps, the “Atlas Dos Remanescentes Florestais da Mata Atlântica” from 2019/2020, covering 
the Forest Atlantic coastal region and the “Carta de Sensibilidade Ambiental ao Óleo -Pará-Maranhão-Barreirinhas 2017”, 
covering most of the Brazilian north coast region. 

 

3.4.3 Beaches, Dunes and Sand Spots 
 



 

Mapped in a single class, here “Beaches,  Dunes and Sand Spots” refers to sandy 

strands, bright white, with no vegetation predominance. As shown in Table 1, the training 

data for this land cover was obtained from MapBiomas Collection 8 and other available 

reference data (Table 2; Figure 7). 

 
Figure 7 - The training data for this land cover was obtained from MapBiomas Collection 8 and available reference, as 
sThis”. 

 

3.4.4 Aquaculture/Salt Culture 
 

Compared to previous Mapbiomas Collections, Collection 10 aquaculture mapping 

consolidated the use of the Deep-Learning model in replacement of the traditional Random 

Forest Algorithm (Diniz et al., 2021), and has detected aquaculture beyond BCZ. In this 

scenario, conventional machine learning algorithms use spectral-temporal data to classify 

targets according to similarities of their spectral-temporal patterns (Breiman, 2001). 

However, temporal and spectral properties might not be enough to discriminate 

“super-similar” targets (targets that behave similarly in both spectral and temporal 

domains). That is the case for most surface water targets, such as aquaculture ponds, rivers, 

lakes, and open waters (Figure 8).  

 Unless water presents a high concentration of external compounds (minerals, 

suspended sediments, algae, and others), not much can be done to spectrally differentiate 

between numerous surface water targets. On the other hand, the temporal domain may not 

present much valid discriminatory data either. In Brazil, aquaculture is a traditional and 

coastal-related economic activity. Thus, in 35 years of data, a diverse set of aquaculture 

frequencies may exist (Barbier and Cox, 2003; Guimarães et al., 2010; Queiroz et al., 2013; 

Tenório et al., 2015; Thomas et al., 2017). As a result, the temporal domain fails to 

distinguish between well-consolidated aquaculture, main river channels, and open waters 

once all these features present high temporal persistence throughout the entire time series. 

  



 

 

 
Figure 8 – Spectral and temporal patterns of the aquaculture, rivers, and open waters classes. In the top-left corner is the 
median cloud-free composite from Macau-RN, northeast of Brazil. The dark blue, green, and red markers represent 
aquaculture, open water, and river samples.  On the top right are the NMDWI values for each one of the samples, in the 
bottom-left JRC occurrence data. The occurrence frequency of each one of the samples is at the bottom right.  

In cases like this, the “context domain” may be essential to distinguishing between 

rivers, aquaculture, and open waters pixels. In the context analysis scenario, the U-Net: 

Convolutional Networks (Abadi et al., 2015) have the advantage of predicting the class label 

of each pixel by providing as input a local region (patches or chips) around that pixel. Such a 

characteristic of working with “patches” or “chips” gives the U-Net the ability to access the 

"context domain" of the image instead of using isolated pixels. The U-Net initial training was 

guided by Collection 9, visual inspection and other available reference data (Table 2). 

In addition to the Brazilian coastal zone, Collection 10 now includes new areas for 

detection. The source for such investigation relies on the document provided by Embrapa 

Territoral, entitled: Mapeamento de viveiros escavados para aquicultura no Brasil por 

sensoriamento remoto (São José, F. F. de et al, 2022). 



 

 

3.4.5 Shallow Coastal Reef 

 
Collection 9 was the first MapBiomas Collection to map shallow tropical reef extent and 

coastal reef structures visible in satellite imagery, as shown in Figure 10, and the results are 

presented in a separate module within the platform. This initiative is significant, as coral 

reefs are the most biodiversity-dense ecosystems globally and the most diverse in the sea 

(Adey, 2000). Yet, it is estimated that at least 25% of all marine species depend on a healthy 

coral reef ecosystem for shelter, food, or reproduction during at least one phase of their life 

(Nancy, 2010). 

 

 
Figure 10 – Example of shallow coastal reefs - visible in satellite imagery. 

 

This is the first approach MapBiomas has made to monitor these ecosystems. Still, the 

goal is to expand the mapping, indicating other essential aspects regarding the health and 

survival of this ecosystem. Other initiatives, such as Allen Coral Atlas (2024), have 

successfully mapped coral areas especially vulnerable to bleaching, inspiring us to continue 

studying ways to further our understanding of these ecosystems through remote sensing 

data. Collection 9 focuses on the shallow coral reef extent, and future collections will focus 

on alerting whether a given reef has crossed the environmental conditions for bleaching to 

occur. 

The most common technical challenges regarding the automatic delineation of shallow 

coastal reefs are interference from suspended sediments and the depth of the reef system. 

In both cases, but through different mechanisms, the sun's light is prevented from reaching 

the reef system and scattered back by the orbital optical sensor on board satellites. 

In Collection 10, additional areas were detected, following visual inspection and 

revisions of some deeper structures 



 

 
Figure 11 - Change detection between collections 9 and 10 of coastal reefs. In green, we can see some additions made to 

the most recent collection. 

 

4 Post-classification 
 

Due to the classification method's pixel-based nature and the very long temporal series, 

a set of post-classification filters was applied. The post-classification process includes 

applying a gap-fill, a temporal, a spatial, and a frequency filter. 

 

4.1 Gap-Fill filter  

 

The chain starts by filling in possible no-data values. In a long-time series of severely 

cloud-affected regions, such as tropical coastal zones, it is expected that no-data values may 

populate some of the resultant median composite pixels. In this filter, no-data values 

(“gaps”) are theoretically not allowed and are replaced by the temporally nearest valid 

classification. In this procedure, if no “future” valid position is available, the no-data value is 

replaced by its previous valid class. Up to three prior years can be used to fill in persistent 

no-data positions. Therefore, gaps should only exist if a given pixel has been permanently 

classified as no-data throughout the entire temporal domain. A mask of years was built to 

keep track of pixel temporal origins, as shown in Figure 12. 



 

 

Figure 12 – Gap-filling mechanism. The following valid classification replaces existing no-data values. If no “future” valid 

position is available, then the no-data value is replaced by its previous valid classification based on up to a maximum of 

three (3) prior years. A mask of years was built to keep track of pixel temporal origins. 

4.2 Temporal filter 

 

After gap-filling, a temporal filter was executed. The temporal filter uses sequential 

classifications in a 3-year unidirectional moving window to identify temporally 

non-permitted transitions. Based on a single generic rule (GR), the temporal filter inspects 

the central position of three consecutive years (“ternary”). If the extremities of the ternary 

are identical, but the center position is not, then the central pixel is reclassified to match its 

temporal neighbor class, as shown in Table 6. 

 
Table 6 - The temporal filter inspects the central position for three consecutive years, and in cases of identical extremities, 

the center position is reclassified to match its neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3), 

respectively. GR means “generic rule”, while Mg and N-Mg represent mangrove and non-mangrove pixels. 

Rule    Input (Year)   Output    
 T1 T2 T3 T1 T2 T3 
GR Mg N-Mg Mg Mg Mg Mg 
GR N-Mg Mg N-Mg N-Mg N-Mg N-Mg 

 

4.3 Spatial filter 

 

Posteriorly, a spatial filter was applied. To avoid unwanted modifications to the edges 

of the pixel groups (blobs), a spatial filter was built based on the "connectedPixelCount" 

function. Native to the GEE platform, this function locates connected components 

(neighbors) that share the same pixel value. Thus, only pixels that do not share connections 

to a predefined number of identical neighbors are considered isolated, as shown in Figure 

13. This filter needs at least ten connected pixels to reach the minimum connection value. 



 

Consequently, the minimum mapping unit is directly affected by the spatial filter applied, 

and it was defined as 10 pixels (~1 ha). 

 

Figure 13 – The spatial filter removes pixels that do not share neighbors of identical value. The minimum connection value 

was 10 pixels. 

 

4.4 Frequency filter 

 

The last step of the filter chain is the frequency filter, as shown in Figure 14. This filter 

considers the occurrence frequency of a given class throughout the entire time series. Thus, 

all class occurrences with less than 10% temporal persistence (3 years or fewer out of 37) 

are filtered out and incorporated into the non-class binary. This mechanism reduces the 

temporal oscillation of the classification signal, decreases the number of false positives, and 

preserves consolidated class pixels. 

 



 

 

Figure 14 – Red, yellow, and green represent mangrove pixels with high (23 or more years, y >=23), average (between 11 

and 22 years, 11 <= y <= 22), and low (ten years or less, y < 11) occurrence frequencies, respectively. The top image shows 

mangrove pixels before applying the frequency filter. The bottom image shows mangrove pixels after applying the frequency 

filter. The black boxes are centered on areas significantly affected by the filter. All mangrove occurrences with less than 10% 

temporal persistence (3 years in 33 possible years) were filtered out. 

 

4.5 Integration with biomes and cross-cutting themes 

 

After applying the filter chain, the cross-cutting themes and the biome data are 
integrated. This integration is guided by specific hierarchical prevalence rules (Table 7). As 
the output of this step, a final land cover/land use map of Brazil for each year. 

Coastal-related features such as Mangroves, Beaches, Dunes, Aquaculture, and 
anthropic transitions widely distributed throughout Brazil’s territory tend to occupy the top 
positions of the prevalence rank, as seen below in Table 7. 

Table 7- Prevalence rules for combining the output of digital classification with the cross-cutting themes in Collection 10. 

 

Class Pixel Value Prevalence Exception 

Mining 30 1 
Urban Infrastructure on MG 

state 
Beach, Dune and Sand Spot 23 2  
Mangrove 5 3  
Aquaculture/Salt-Culture 31 4  
Hypersaline Tidal Flat 32 5  

Coastal Reefs 69 -  
* coastal reefs are not 

integrated into the same map 
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