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1.  OVERVIEW OF THE CERRADO CLASSIFICATION METHOD 

The land cover classification methodology for the Cerrado biome, developed 

under the MapBiomas project, uses decision tree-based algorithms to generate annual 

maps of dominant native vegetation (NV) types. These types are grouped into five broad 

categories: Forest Formation, Savanna Formation, Wetland, Grassland Formation, and 

Rocky Outcrop. Since the project's inception, the methodology has undergone continuous 

refinement, resulting in substantial improvements from the first collection to the current 

version (Collection 10.0). While significant advances have been made in recent editions, 

efforts have also focused on preserving the methodological improvements achieved in 

previous collections. The Cerrado classification workflow involves several key steps. First, 

identify the optimal time window to generate annual Landsat mosaics. Then, remote 

sensing metrics were defined as potential predictors (feature space). Reference training 

samples were generated to calibrate the classification algorithm. Post-classification 

treatments were applied to reduce noise and ensure temporal consistency. Finally, the 

resulting maps were integrated with other cross-cutting themes. Classification results are 

validated through both visual inspection and sample-based accuracy assessment. A 

detailed summary of the methodological evolution of land use and land cover (LULC) 

classifications in the Cerrado biome is presented in Table 1. 

 

Table 1. Table 1. Summary of methodological evolution across MapBiomas Cerrado collections. 

EDT: Empirical Decision Tree; RF: Random Forest; SR: Surface Reflectance; NV: Native Vegetation. 

Collection Year Range Method Mapped classes Key Improvements 

1.0  2008 – 2015 EDT Forest First version of the Cerrado collection 

2.0 2000 – 2016 EDT Forest, Savanna, Grassland 
Inclusion of new NV classes (Savanna and 

Grassland formations) 

2.3 2000 – 2016 RF 

Forest, Savanna, Grassland, Mosaic 

of Agriculture and Pasture, Other 

Non-vegetated Area, Water 

Introduction of Random Forest (RF); Auxiliary 

classes (mosaic, non-vegetated areas, and water); 

Training samples from stable areas 

3.0 1985 – 2017 RF Same as Collection 2.3 
Full Landsat series (since 1985); Improved training 

sample quality with outlier removal 

3.1 1985 – 2017 RF Same as Collection 3.0 
The classification by ecoregions (38) was used to 

replace the regular tiles. 

4.0 1985 – 2018 RF Same as Collection 3.1 
Improvement in training samples quality by using 

new reference maps 
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Collection Year Range Method Mapped classes Key Improvements 

4.1 1985 – 2018 RF 

Forest, Savanna, Grassland, 

Pasture, Agriculture, Other 

Non-vegetated Area, Water 

Variable importance for feature selection; 

Enhanced post-processing temporal filter; 

Significant accuracy gains in NV mapping 

5.0 1985 – 2019 RF Same as Collection 4.1 

New reference maps; Improvements in spatial 

continuity between classification regions 

New vegetation dynamics product (deforestation 

and secondary vegetation) 

6.0 1985 – 2020 RF 

Forest, Savanna, Wetland, 

Grassland, Mosaic of Agriculture 

and Pasture, Other Non-vegetated 

Area, Water 

New NV class (Wetland); New reference maps; 

Landsat SR mosaics; Feature space refinement 

7.0 1985 – 2021 RF 

Forest, Savanna, Wetland, 

Grassland, Rocky Outcrop, Mosaic 

of Uses, Other Non-vegetated Area, 

Water 

New NV class (Rocky Outcrop); New reference 

maps; GEDI for outlier training samples filtering; 

Revision of classification regions (38); Significant 

accuracy gains in NV mapping 

7.1 1985 – 2021 RF Same as Collection 7.0 
Improvement of temporal filter rules in the last 

year (2021) 

8.0 1985 – 2022  RF Same as Collection 7.0 

New reference maps; Regionalization of 

hyperparameters and classification; Revision of 

the temporal filtering rules; Territorial expansion 

of Rocky Outcrop classification 

9.0 1985 – 2023  RF Same as Collection 7.0 

New reference maps; Multiprobability approach; 

Post-processing filters revision; New false 

regrowth filter; New Rocky Outcrop workflow; 

Significant accuracy gain in NV mapping 

10.0 1985-2024 RF 

Forest, Savanna, Wetland, 

Grassland, Rocky Outcrop, 

Herbaceous Sandbank Vegetation, 

Mosaic of Uses, Other 

Non-vegetated Area, Water 

New reference maps; New NV Class (Herbaceous 

Sandbank Vegetation); Monthly Landsat SR 

mosaics; Herbaceous Sandbank Vegetation and 

Geomorphometric filters; Redefined Rocky 

Outcrop concept 

 

In Collections 1.0 and 2.0, empirical decision trees were applied, with rule-based 

thresholds informed by expert knowledge of the spectral characteristics of each class. 

Collection 1.0 covered the period 2008 to 2015 and was released in 2016. Collections 2.0 

and 2.3 extended the temporal range to 2000–2016, with Collection 2.3 (a revised version 
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of Collection 2.0) introducing the use of the Random Forest (RF) algorithm. Empirical 

decision trees were used to generate stable training samples for the 2000–2016 period, 

which in turn were used to train the RF classifier across the full time series. Collections 3.0 

and 3.1 expanded the historical coverage to include the years 1985–2017, and a 

methodological paper was published (Alencar et al., 2020). Collections 4.0 and 4.1 

(1985-2018) demonstrated a notable enhancement in mapping precision compared to 

previous collections. These improvements were largely driven by the refinement of the 

feature space, which was redesigned based on a variable importance analysis using the RF 

algorithm. Additionally, new post-classification filters were implemented to better account 

for temporal consistency and reduce noise in the time series, resulting in more accurate 

detection of land cover transitions. From Collection 2.3 onward, training samples were no 

longer generated using empirical trees but were instead based on stable samples from 

previous collections, contributing to improved classification accuracy. 

Beginning with Collection 5.0 (1985-2019), official reference maps (PRODES 

Cerrado and PROBIO) were incorporated to spatially constrain training sample collection 

for NV classes, minimizing bias. Collection 6.0 (1985-2020) introduced several important 

methodological updates. The classified time series was extended to encompass the period 

from 1985 to 2020, a new NV class (Wetland) was introduced, the surface reflectance 

mosaic was implemented, and the feature space was refined. In addition to the reference 

maps already used in Collection 5.0, the “Inventário Florestal do Estado de São Paulo” was 

incorporated to support training sample filtering for NV classes. In Collection 7.0 

(1985–2021), a new class (Rocky Outcrop) was introduced. The training dataset was 

refined through the application of an outlier detection filter based on GEDI Global Forest 

Height data (Lang et al., 2022) and the incorporation of the “Base Temática Digital do 

Estado do Tocantins” as an additional reference map. These improvements enhanced the 

quality and reliability of training samples. The reference maps adopted in Collection 6.0 

were maintained. Unlike in Collection 6.0, where the Wetland class was treated as a 

pseudo cross-cutting theme, it was directly integrated into the main classification process 

in Collection 7.0. The Collection 7.1 was released as a reprocessed version of Collection 

7.0 to correct temporal filtering issues in the final year of the series. It addressed the 

overestimation of deforestation peaks in 2021 caused by misclassified transitions.  

Collection 8.0 (1985–2022) incorporated substantial methodological advances. The 

training mask was improved with the inclusion of deforestation alerts from MapBiomas 

Alert and SAD Cerrado (2019–2022), enhancing the filtering of anthropogenic classes. 

Additionally, the classification approach was strengthened by regionalizing both the 

hyperparameters and the classification process, allowing better adaptation to local 

biophysical conditions. The classification of the Rocky Outcrop class was also expanded to 

ensure its representation across the entire Cerrado biome, using a more robust and 

spatially consistent methodology. Collection 9.0 (1985–2023) continued this strategy, 
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updating training sample filtering with alerts from MapBiomas Alert and SAD Cerrado 

(2019–2023). New reference datasets were introduced, including the “Mapa de Uso e 

Cobertura da Terra do Distrito Federal” and the “Mapeamento dos Remanescentes de 

Campos de Murundus do Estado de Goiás”. In this collection, hyperparameter 

regionalization was discontinued, although the regional classification scheme was 

maintained. Moreover, the classification process adopted a multiprobability approach, 

which considers the probability distribution of all classes instead of relying solely on 

majority voting, thereby improving the reporting of classification uncertainties. 

Post-processing routines were revised, and a new false regrowth filter was introduced to 

suppress spurious transitions in recent years. The Rocky Outcrop class was also expanded 

using a revised classification approach, updated training samples, and new predictor 

variables. 

In the current Collection 10.0 (1985–2024), the classification period was updated, 

and the strategy for training sample design was revised to improve spatial 

representativeness and reduce classification noise. Training samples filtering was updated 

to incorporate MapBiomas Alert deforestation alerts (2019–2024), with the removal of 

SAD Cerrado data used in previous collections. The training masks were refined by 

including new reference datasets, such as the “Mapa de Veredas e Áreas Úmidas do 

Sudoeste do Tocantins” and “Cobertura e Uso da Terra do Sudoeste do Tocantins”. A major 

improvement in image preprocessing was the adoption of monthly Landsat surface 

reflectance mosaics, which improved temporal resolution and data quality for 

classification. The classification continues to apply the multiprobability approach. 

Post-processing filters were comprehensively revised to enhance the accuracy of land 

cover change detection. Two new thematic filters were introduced: (i) a post-processing 

step to map the Herbaceous Sandbank Vegetation, and  (ii) a Geomorphometric filter, 

designed to enhance Sandbank Vegetation mapping in coastal areas and to remove 

misclassified Wetland pixels in shadow or relief-prone zones. Furthermore, the 

methodology for mapping the Rocky Outcrop class underwent revision in this collection, 

subsequent to a conceptual update. The class is now strictly defined as areas with 

exposed rock, explicitly excluding regions with rupestrian vegetation. This approach marks 

a departure from the method employed in Collections 7.0 to 9.0, wherein both exposed 

rock and rupestrian vegetation were incorporated into the classification. The classification 

and post-processing scripts employed in this collection are available at 

https://github.com/mapbiomas/brazil-cerrado.  

 

2. METHODOLOGICAL DESCRIPTION 

In MapBiomas Collection 10.0, the classification of Landsat mosaics for the 

Cerrado biome included a comprehensive set of ten land use and land cover classes, as 
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defined in the official MapBiomas legend (available at: Legend Code). These classes, 

detailed in Table 2, include native vegetation (NV) and water bodies, as well as 

anthropogenic land use classes, such as Agriculture and Pasture. It is important to note 

that the classes Agriculture and Pasture are mapped in the early stages of the 

classification process. These classes are not the focus of the Cerrado-specific methodology 

and are derived from cross-cutting themes coordinated by teams specialized in farming 

land use. Within the Cerrado classification framework, these classes help improve the 

delineation of native vegetation by reducing the risk of omission or commission errors and 

minimizing confusion between anthropogenic and natural land cover types. During the 

post-processing stage, these two classes are merged into a single class labeled as Mosaic 

of Uses. 

The following sections provide a detailed description of the main components of 

the Collection 10.0 methodology: Landsat Image Mosaic (Section 3), General Classification 

and Post-Classification (Sections 4 and 5), and Rocky Outcrop Classification (Section 6). An 

overview of the workflow is shown in Figure 1. The core methodological steps can be 

summarized as follows: 

 

● Landsat Mosaic: Multi-temporal surface reflectance mosaics were generated from 

monthly Landsat imagery to ensure optimal spectral quality, reduce atmospheric 

noise, and maintain temporal consistency across the time series. 

● Training Samples: Samples were primarily extracted from stable pixels identified in 

Collection 9.0 (1985–2023), complemented by thematic reference data and 

GEDI-derived information. A stratified sampling design ensured proportional class 

representation across regions and years. 

● General Classification: Land cover classification was conducted using the Random 

Forest algorithm in Google Earth Engine, applying a multiprobability approach to 

represent class uncertainty. Post-classification filters were applied to correct 

temporal inconsistencies and remove spatial artifacts. 

● Rocky Outcrop Classification: A dedicated classification workflow was developed 

to map Rocky Outcrop. Training samples were visually interpreted and validated, 

and classification was performed using Random Forest. Temporal and spatial filters 

refined the final output. 

● Internal Integration: Two outputs were generated: (i) the general land use and 

land cover map and (ii) the rocky outcrop map. The latter was integrated into the 

general map through a final post-processing procedure. 
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● Integration with Cross-Cutting Themes: Annual biome maps were harmonized 

with thematic layers using predefined MapBiomas prevalence rules, ensuring 

consistency and avoiding class overlaps. 

 

 

Figure 1. Workflow for the land use and land cover (LULC) classification of the Cerrado biome in 

Collection 10.0. Two parallel modules were applied: (i) the general classification, and (ii) a specific 

classification of Rocky Outcrop. Both used the Random Forest algorithm implemented in Google 

Earth Engine. Outputs were integrated into two stages: (i)internal integration combined the Rocky 

Outcrop map with the general map; and (ii) integration of the maps with cross-cutting themes to 

produce 40 annual LULC maps (1985 to 2024). 
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Table 2. Land use land cover categories used for the Landsat mosaics classification for the Cerrado biome in MapBiomas Collection 10.0. 

Classes Level 1 Classes Level 2 ID 
Legend 

Color 
RGB composite 

(SWIR1-NIR-Red) 
Description  

Forest 

Forest Formation 3   

 

Vegetation types with predominance of tree species, with continuous 

canopy formation (Riparian Forest, Gallery Forest, Dry Forest, and 

Forested Savanna - Mata Ciliar, Mata de Galeria, Mata Seca e Savana 

Florestada) (Ribeiro & Walter, 2008), as well as Semi-deciduous 

Seasonal Forests. 

Savanna Formation 4   

 

Savanna formations with defined tree and shrub-herbaceous stratum 

(Cerrado Stricto Sensu: Dense, Typical, Sparse and Rupestrian Savanna - 

Cerrado Stricto Sensu: Savana Densa, Típica, Esparsa e Rupestre). 

Herbaceous and 

Shrubby Vegetation 

Wetland 11  

 

Vegetation with a predominance of herbaceous strata subject to 

seasonal flooding (e.g., Campo Úmido) or under fluvial/lacustrine 

influence (e.g., Brejo). In some regions, the herbaceous matrix is 

associated with arboreal species of savanna formation (e.g., Parque de 

Cerrado) or palm trees (Vereda, Palmeiral). 

Grassland 12   

 

Grassland formations with a predominance of herbaceous strata (Dirty, 

Clean and Rupestrian Grassland - Campo Sujo, Limpo e Rupestre) and 

some areas of savanna formations such as the Rupestrian Cerrado. 

Rocky Outcrop 29  

 

Monolithic features, bedrock, or slabs naturally exposed to the earth's 

surface without soil cover or rupestrian vegetation. This class typically 

includes stable geological formations with clear indicators of sedimentary, 

igneous, or metamorphic origins. 
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Classes Level 1 Classes Level 2 ID 
Legend 

Color 
RGB composite 

(SWIR1-NIR-Red) 
Description  

 
Herbaceous Sandbank 

Vegetation* 
50  

 

A landscape composed of predominantly herbaceous-shrubby vegetation, 

with sparse shrubs, developed on sandy plains in coastal environments. 

Farming 

Pasture* 15  

 

The pasture area, predominantly planted, is linked to cattle ranching 

activities. 

Agriculture* 18  

 

Areas occupied with short to long-cycle crops. This encompasses both 

perennial and temporary crops. 

Non-Vegetated 

Area 
Other Non-Vegetated Areas 25   

 

Areas of non-permeable surfaces (infrastructure, urban infrastructure, 

or mining), regions of exposed soil in natural areas (e.g., erosion and 

landslides), or in crop areas in the off-season. 

Water River, Lake, and Ocean 33   

 

Rivers, lakes, dams, reservoirs, and other water bodies 

* Agriculture and Pasture are merged into Mosaic of Uses during the temporal filter; Herbaceous Sandbank Vegetation is added via a post-classification method. 
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3. LANDSAT IMAGE MOSAICS 

The first step in the classification of native vegetation (NV) in the Cerrado biome is 

the generation of annual image mosaics, which serve as the primary input for the LULC 

classification process. In earlier MapBiomas collections, up to 5.0, annual mosaics were 

generated using top-of-atmosphere (TOA) reflectance data from Landsat 5 (TM), Landsat 7 

(ETM+), and Landsat 8 (OLI). From Collection 6.0 onward, this approach was replaced 

using surface reflectance (SR) data from Landsat Collection 2, which provides 

atmospherically corrected and radiometrically consistent inputs across sensors 

throughout the time series. To ensure temporal continuity and consistency from 1985 

onward, a sensor-prioritization strategy was adopted. Landsat 5 (TM) SR data was 

prioritized for the period 1985 to 2010, except in 2001 and 2002, when TM sensor issues 

led to the use of Landsat 7 (ETM+). Landsat 7 data remained the primary source for 2011 

and 2012, followed by Landsat 8 (OLI) from 2013 onward. 

Up to Collection 9.0, annual mosaics were constructed using Level-2 surface 

reflectance images from Landsat Collection 2. In Collection 10.0, however, a major 

advancement was the adoption of the composite dataset 

LANDSAT/COMPOSITES/C02/T1_L2_32DAY, a product composed of 32-day surface 

reflectance composites derived from orthorectified Level-1 scenes. This product provides 

increased scene availability, improved geometric correction, and greater temporal 

continuity, especially in earlier years of the time series. For more information about this 

product, refer to the Earth Engine Data Catalog. The adoption of this new mosaic source in 

Collection 10.0 led to notable improvements in mosaic quality, particularly in regions 

historically affected by persistent cloud cover or limited image availability. 

Since the first collection, the optimal temporal window for mosaic generation has 

been systematically evaluated, considering the strong seasonality of Cerrado vegetation. 

Given that vegetation spectral responses differ significantly between the rainy and dry 

seasons, comparative tests were conducted using imagery compositions from both the 

rainy and dry seasons (Figure 2). Imagery from the end of the rainy season, when 

vegetation remains vigorous and cloud cover tends to decrease, resulted in greener 

mosaics but also increased commission errors in forest formation class mapping. 

Conversely, mosaics generated from images acquired in the final months of the dry season 

(July to September) resulted in drier mosaics, which led to underestimation of forest 

coverage, mainly due to the reduced potential to detect deciduous forests. 
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Figure 2. False-color composite of Landsat 8 (OLI) mosaics illustrating spectral differences between 

the end of the rainy season and the end of the dry season in the Cerrado biome. Precipitation data 

represent monthly averages for the Cerrado region (Macena et al., 2008), while temperature data 

correspond to monthly averages for the Federal District (INMET). 

 

Based on these findings, a standardized six-month compositing window (April to 

September) was adopted across all 38 classification regions and all years. This broader 

window improved regional consistency and addressed limitations observed in tests using 

narrower time windows (Figure 3). The mosaics are constructed by compositing pixels 

from all valid Landsat scenes within this window. For each pixel, reduction metrics such as 

median, amplitude, standard deviation, and minimum are calculated and aggregated 

annually, resulting in a multi-band image that serves as input for the classification models. 

The final mosaics are visually inspected to ensure their quality and suitability for 

subsequent classification steps.  
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Figure 3. Time window adopted for the annual classification mosaics construction in the Cerrado 

biome. Precipitation data represent monthly averages for the Cerrado region (Macena et al., 

2008), and temperature data correspond to monthly averages for the Federal District (INMET). 

 

4. GENERAL MAP CLASSIFICATION 

The complete workflow for the general land use and land cover classification is 

shown in Figure 4. This workflow integrates multiple processing steps to ensure accurate 

and temporally consistent mapping across the Cerrado biome. The methodological steps 

are detailed in the following sections, beginning with the delineation of classification 

regions (4.1), followed by the construction of the feature space used for model training 

(4.2). The sampling strategy and classification procedure are described in section 4.3, 
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including the generation of a training mask based on stable areas, the application of a 

stratified sampling design, and the classification using the Random Forest algorithm. 

Finally, the post-classification filtering steps applied to improve temporal and spatial 

consistency are detailed in Section 5. 

 

 

Figure 4. Each gray geometry (cylinders for databases and rectangles for processes) represents a 

key step in the classification schema, with the respective name inside. The gray text near 

databases and processes offers a description of the step, while the green text highlights the main 

innovations in Collection 10.0. Arrows with a continuous black line connecting the key steps 

represent the main direction of the processing flux, while arrows with dotted black lines represent 

the databases that feed the main processes. Red text inside arrows refers to the asset type in the 

Google Earth Engine, while blue text offers a concise description of the asset content. 

 

4.1. Classification regions 

In the initial MapBiomas Cerrado collections (up to Collection 3.0), the 

classification process was organized using a regular grid based on a 1:250,000 scale, 

comprising 172 tiles. Each tile was independently processed by the classification 

algorithm. Although operationally simple, this grid-based approach often caused 

discontinuities and inconsistencies along tile boundaries, compromising the spatial 

coherence of the resulting maps. Starting from Collection 3.1, a new regionalization 

strategy was implemented to better capture the ecological and biophysical heterogeneity 

of the Cerrado biome. Classification units were defined based on the ecoregions proposed 
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by Sano et al. (2019) and further refined using Brazil’s major hydrographic basins and the 

spatial distribution of land use and land cover classes from Collection 3.0 (2017). This 

integration resulted in the delineation of 38 classification regions, replacing the previous 

tile-based system and enabling a more ecologically meaningful and spectrally consistent 

classification. 

In Collection 7.0, these classification regions were refined to account for 

phenological variability, particularly related to the seasonality of native vegetation (Figure 

5). This refinement was based on an empirical analysis of Sentinel-2 surface reflectance 

(SR) data from 2017 to 2020, in which the Normalized Difference Vegetation Index (NDVI) 

was calculated for each pixel. The difference between the 90th and 10th percentiles 

(p90–p10) of NDVI values was used to identify areas with high seasonal variation. These 

patterns were then used to adjust the region boundaries, ensuring that areas with distinct 

spectral and phenological characteristics were not grouped within the same classification 

region. Since Collection 7.0, this revised set of 38 classification regions has been 

maintained and remains in use in Collection 10.0. This framework has proven effective in 

capturing the Cerrado’s regional vegetation dynamics and enhancing the consistency and 

accuracy of classification results across diverse environmental contexts. 

 

 

Figure 5. Classification regions, modified from Sano et al., 2019. Highlighted in orange is the 

location of the Cerrado biome in Brazilian territory. 
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4.2. Feature space 

The feature space used for LULC classification in Collection 10.0 consisted of a 

comprehensive set of 220 predictor variables, designed to capture the spectral, temporal, 

and environmental complexity of the Cerrado biome. These variables included both 

dynamic (annual) and static (non-annual) components. The annual component was 

primarily derived from Landsat surface reflectance mosaics, as described in Table 3. It 

included the original spectral bands, a range of vegetation indices, and variables derived 

from spectral mixture modeling. For each of these variables, a set of statistical reduction 

metrics was calculated within the April–September compositing window, including 

minimum (5th percentile), maximum (95th percentile), median, mean, standard deviation, 

and amplitude. These metrics were selected to capture the seasonal variability in spectral 

response, providing a temporally robust input for classification. 

 

Table 3. Feature space considered in the classification of the Cerrado biome in MapBiomas 

Collection 10.0. The column “Statistic” refers to the set of per-pixel statistical reducers applied to 

each variable within the annual temporal window (April–September): a) Amplitude – range of 

pixel values; b) Median – annual median; c) Median_dry – seasonal median for dates below the 

first quartile of NDVI values (dry period); d) Median_wet – seasonal median for dates above the 

first quartile of NDVI values (wet period); e) Standard deviation – annual variation; f) Minimum – 

5th percentile of pixel values within the temporal window; g) Maximum – 95th percentile of pixel 

values within the temporal window. 

Type Name  Formula / Description Statistics Reference 

 
Landsat 
Band 

Blue, Green, Red, NIR, 
SWIR1, SWIR2 

Original reflectance bands 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

USGS 

 
Spectral 
Index 
 

NDVI 
Normalized Difference 
Vegetation Index 

(NIR - Red) / (NIR + Red) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Rouse et al., 
1974 

EVI2 
Enhanced Vegetation 
Index 2 

2.5 × (NIR - Red) / (NIR + 2.4 × Red + 1) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Parente et 
al., 2018 

GCVI 
Green Chlorophyll 
Vegetation Index 

(NIR / Green - 1) 
Median, 
Median_dry, 
Median_wet, 

Burke et al., 
2017 
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Type Name  Formula / Description Statistics Reference 

Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

PRI 
Photochemical  
Reflectance Index 

(Blue - Green) / (Blue + Green) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Gamon et al., 
1992 

MNDWI 
Modified Normalized 
Difference Water Index 

(Green − SWIR1) / (Green + SWIR1) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Xu et al., 
2006 

CAI 
Cellulose Absorption Index 

SWIR2 / SWIR1 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Nagler et al.,  
2003 

MSAVI 
Modified Soil Adjusted 
Vegetation Index 

0.5 × [2 × NIR + 1 − √(2 × NIR + 1)² − 8 
× (NIR − Red)] 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Qi et al., 
1994 

GCVI 
Green Chlorophyll 
Vegetation Index 

(NIR / Green - 1) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Burke et al., 
2017 

GRND 
Green Normalized 
Difference Vegetation 
Index 

Green / Red 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Gitelson et 
al., 1996 

MSI 
Moisture Stress Index 

SWIR1 / NIR 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Zarco-Tejada 
et al., 2003 

GARI 
Green Atmospherically 
Resistant Vegetation Index 

(NIR − (Green − (Blue − Red))) / (NIR + 
(Green − (Blue − Red))) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 

Gitelson et 
al., 2003 
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Type Name  Formula / Description Statistics Reference 

Maximum (P95), 
StdDev, Amplitude 

GNDVI 
Green Normalized 
Difference Vegetation 
Index 

(NIR − Green) / (NIR + Green) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Gitelson et 
al., 1996 

Hall Height 
(−0.039 × Red − 0.011 × NIR − 0.026 × 

SWIR1 + 4.13) 
Median, StdDev 

Hall et al., 
2006 

Hall Cover 
(- Red × 0.017 - NIR × 0.007 - SWIR2 × 

0.079 + 5.22) 
Median, StdDev 

Hall et al., 
2006 

 
 
 
 
Fraction 

GV 
Green Vegetation Fraction 

Fractional abundance of green 
vegetation within the pixel 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Souza et al., 
2005 

GVS 
Green Vegetation Shade 
Fraction 

GV / (GV + NPV + Soil + Cloud) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Housman et 
al., 2018 

NDFI  
Normalized Difference 
Fraction Index 

(GVS - (NPV + Soil)) / (GVS + (NPV + 
Soil)) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

 
Souza et al., 

2005 

NPV 
Non-photosynthetic 
Vegetation Fraction  

Fractional abundance of 
non-photosynthetic vegetation within 

the pixel 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Souza et al., 
2005 

SEFI 
Savanna Ecosystem  
Fraction Index 

(GV + NPV_S - Soil) / (GV + NPV_S + 
Soil) 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Alencar et 
al., 2020 

Shade Fraction 100 - (GV + NPV + Soil + Cloud) Median 
Housman et 

al., 2018 

Soil Fraction 
Fractional abundance of soil within 

the pixel 

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 

Souza et al., 
2005 
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Type Name  Formula / Description Statistics Reference 

Maximum (P95), 
StdDev, Amplitude 

WEFI 
Wetland Ecosystem  
Fraction Index 

((GV + NPV) - (Soil + Shade)) / ((GV + 
NPV)) + (Soil + Shade))  

Median, 
Median_dry, 
Median_wet, 
Minimum (P5), 
Maximum (P95), 
StdDev, Amplitude 

Rosa, 2020 

Other Green Band Entropy 
Entropy over the green_median band 
computed with a 5-pixel square kernel 

Median 
Adapted 

from GLCM 
texture 

 

In addition to these annual variables, a set of static predictors has been 

incorporated since Collection 7.0 to provide environmental and spatial context to the 

classification model. This set includes HAND (Height Above Nearest Drainage) and fire 

history metrics derived from MapBiomas Fire Collection 3. Spatial coordinates (latitude 

and longitude) were also included to reduce the influence of training samples from one 

region on other areas. A key innovation in Collection 10.0 was the incorporation of 

geomorphometric variables, which aimed to support the discrimination of native 

vegetation types in areas characterized by more complex topography. Derived from digital 

elevation models, these variables include terrain morphology descriptors such as slope, 

aspect, curvature, and other derivatives that reflect geomorphological processes. The full 

list of non-annual variables is presented in Table 4. 

 

Table 4. Static (non-annual) variables used in the classification process of MapBiomas Collection 

10.0 for the Cerrado biome. "Identity" in the statistics column indicates that the variable is used 

directly, without temporal reduction. All geomorphometric variables are from the Geomorpho 

90m dataset (Amattulli et al., 2020).  

Name Formula / Description Statistics Reference 

Latitude 
Extracted from pixel latitude 

(ee.Image.pixelLonLat()) 
Identity Geolocation function 

Cosine of Longitude 
cos(ee.Image.pixelLonLat() 

.select([‘longitude’])) 
Identity Geolocation function 

Sine of Longitude 
sen(ee.Image.pixelLonLat() 

.select([‘longitude’])) 
Identity Geolocation function 

Time Since the Last Fire  Current year - Year of the last fire Identity Alencar et al., 2022 

17 



Name Formula / Description Statistics Reference 

Height Above the Nearest 
Drainage 

HAND Global 30m Identity Donchyts et al., 2016  

Elevation (DEM) MERIT DEM elevation (in meters) Identity Yamazaki et al., 2017 

Aspect Terrain aspect  Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Convergence Index Terrain convergence Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Roughness Surface roughness index Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Eastness 
Derived from the aspect data to represent 

east-facing slopes 
Identity 

Geomorpho 90m 
Amatulli  et al., 2020 

Northness 
Derived from the aspect data to represent 

north-facing slopes 
Identity 

Geomorpho 90m 
Amatulli    et al., 2020 

Longitudinal Curvature 
Second derivative of elevation in the 

x-direction 
Identity 

Geomorpho 90m 
Amatulli  et al., 2020 

CTI 
Compound Topographic 
Index 

Wetness index combining slope and 
upstream area 

Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

 

4.3. Training mask, stratified sampling, and classification approach 

The training mask was primarily derived from stable pixels identified in 

MapBiomas Collection 9.0 and reclassified according to the Cerrado classification scheme. 

Pixels that maintained the same class throughout the 1985–2023 time series were 

selected and further refined using additional validation sources. To improve reliability, 

classes with high uncertainty or transitional characteristics, such as “Other Non-Vegetated 

Areas” (25) and “Mosaic of Uses” (21), were excluded. These included deforestation alerts 

from PRODES and MapBiomas Alerta, as well as regional reference maps from state 

agencies (e.g., São Paulo, Tocantins, Goiás, Distrito Federal). To ensure spatial consistency, 

only homogeneous patches equal to or larger than 1 hectare (~11 Landsat pixels) were 

retained in the final training mask. A canopy height filter based on GEDI data was applied 

to exclude class-specific outliers. The outlier removal procedure followed the same logic 

adopted in Collection 7.0, which resulted in a documented accuracy improvement of 

+0.9%. The height-based filtering criteria were defined as follows: 

● Forest Formation (3, including Mangrove and Flooded Forest): height < 4 m 

● Savanna Formation (4): height < 2 m or > 8 m 
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● Wetland (11): height > 15 m 

● Grassland Formation (12): height > 6 m 

● Pasture (15): height > 8 m 

● Agriculture (18, including temporary and perennial crops): height > 7 m 

● Non-Vegetated Areas (25, including urban areas, mining, and beach): height > 0 m 

● Water (33): height > 0 m 

A stratified random training sampling strategy was employed to ensure 

proportional representation of all LULC classes across different regions. Sampling was 

based on the 2005 map from Collection 9.0 to estimate class areas per classification 

region. A total of 4,800 samples were allocated per region, with at least 480 samples per 

class to ensure representation of less frequent classes. For the water class, a minimum 

threshold of 240 samples was applied to reduce overestimation. This approach aimed to 

improve classification accuracy and ensure that underrepresented classes were 

adequately accounted for during the classification procedure. 

Classification was performed regionally for each year using the Random Forest 

algorithm implemented in Google Earth Engine (GEE) via the 

ee.Classifier.smileRandomForest function. Based on the results of previous collections, the 

number of decision trees (ntrees) was set to 300 for all regions, and the number of 

variables per split was set to  (mtry). The model operated in 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑑𝑠
multiprobability mode, generating a probability distribution for each class. The final land 

use land cover class for each pixel was assigned based on the class with the highest 

probability, increasing the model’s robustness to spectral confusion and uncertainty. 

 

5. GENERAL MAP POST-CLASSIFICATION 

Given the pixel-based classification methodology and the annual processing of the 

time series (1985–2024), a structured post-classification filtering framework was applied 

to improve the spatial and temporal consistency of the final land cover maps. The main 

objective of this stage was to correct classification artifacts and reduce spurious 

transitions typically associated with per-pixel classifiers applied to long temporal series. 

The post-processing framework included a sequence of filters: temporal gap-filling, 

transition incidence, temporal consistency, and spatial coherence. Each filter was 

designed to address specific classification limitations and, together, they contributed to 

the overall quality and reliability of Collection 10.0. 
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5.1. Temporal Gap-Fill Filter 

The gap-filling filter was designed to address missing data, commonly caused by 

cloud and shadow contamination or image availability gaps, by propagating valid 

classifications across the temporal dimension. The method implemented a bidirectional 

temporal search. First, the algorithm conducted a forward fill, replacing each no-data pixel 

with the nearest valid classification from subsequent years. In a second pass, a backward 

fill was applied to capture remaining gaps, assigning the most recent valid classification 

from previous years. This two-step process ensured that the final classified time series 

had minimal missing values, resulting in more complete and temporally coherent land 

cover maps. Persistent gaps remained only in exceptional cases where a pixel was 

consistently unclassified throughout the entire 1985–2024 period. 

 

5.2. Incidence filter 

To address excessive class transitions over time, particularly oscillations between 

natural and anthropogenic cover types, an incidence filter was applied. All classes were 

grouped into three broad categories: (i) Natural (Forest Formation, Savanna Formation, 

Grassland Formation, Wetland), (ii) Anthropogenic (Pasture, Agriculture, Non-Vegetated 

Areas), and (iii) Other (Water and Not Observed). For each pixel, the number of transitions 

between the Natural and Anthropogenic groups was computed. Pixels with more than ten 

such transitions and fewer than seven connected similar pixels were classified as unstable 

and likely influenced by edge effects or spectral mixing. In these cases, the entire pixel 

time series was replaced by its most frequent class to simplify the trajectory. A similar 

correction was applied to core pixels (defined as those with more than seven similar 

neighbors) when transitions exceeded fourteen (approximately one-third of the time 

series). This filtering strategy helped distinguish edge-related spectral noise from 

legitimate land cover dynamics within core patches of vegetation. 

 

5.3. Herbaceous Sandbank Vegetation 

The Herbaceous Sandbank Vegetation (Restinga Herbácea, code: 50) was not 

included in the initial Random Forest classification due to the lack of training samples and 

its geographically restricted occurrence along the Brazilian coast. This class was mapped in 

a post-classification step using a targeted rule-based approach based on spectral, 

topographic, and edaphic criteria. The primary spectral criterion was the Soil Adjusted 

Vegetation Index (SAVI), derived from annual Landsat mosaics (1985–2024). SAVI values 

between 13,000 and 14,500 were empirically identified as optimal for distinguishing this 

vegetation type from other native formations, based on comparisons between the SAVI 
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distributions for Herbaceous Sandbank Vegetation and other NV classes (forest, savanna, 

wetland, and grassland) (Figure 6). Although some overlap with the savanna was 

observed, the Herbaceous Sandbank class exhibited a more distinct SAVI range overall. To 

reduce potential confusion, the filter was restricted to areas mapped as Quartzarenic 

Neosols (Entisols) by IBGE (Brazilian Institute of Geography and Statistics), and only areas 

with HAND values below 3.5 meters were used to represent the low-elevation, poorly 

drained environments characteristic of this vegetation type. The filter was applied only to 

pixels originally classified as Savanna, Grassland, or Wetland. It is important to note that 

this is a BETA class, introduced experimentally in Collection 10.0 to assess its feasibility 

and potential for future integration into the main classification workflow. The 

methodology and spatial delineation will be refined in future MapBiomas Cerrado 

collections, based on users' feedback and improved training data. 

 

 

Figure 6. Annual distribution of the Soil Adjusted Vegetation Index (SAVI × 10⁻⁴) for different land 

cover classes in the Cerrado biome between 1985 and 2023. Each boxplot represents the temporal 

variability of SAVI values for a given year and native vegetation class. Dashed lines indicate 

thresholds used to guide class discrimination in post-classification filters. 
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5.4. Frequency 

The frequency filter was applied to pixels classified as native vegetation in at least 

90% of the 1985–2024 time series. Its objective was to improve temporal consistency and 

reduce uncertainties caused by intermittent misclassifications. For each pixel, the 

frequency of assignment to native vegetation classes was calculated, and specific 

thresholds were applied to confirm class stability. Pixels that met the 90% native 

vegetation criterion were further evaluated using class-specific frequency thresholds. 

Forest Formation was confirmed when present in ≥70% of the years; Wetland and 

Herbaceous Sandbank when ≥60%; Grassland Formation when >50%; and Savanna 

Formation when >40%. It is important to note that the frequency filter was particularly 

effective in mitigating edge noise and inconsistencies during the initial and final years of 

the time series, which are more susceptible to image availability and cloud effects. 

 

5.5. Temporal 

The temporal filter implemented in Collection 10.0 is a key post-classification step 

designed to reduce spurious transitions and reinforce the temporal logic of land cover 

dynamics. It addresses short-term inconsistencies and stabilizes both the beginning and 

the end of the 1985–2024 classification series. In this step, Agriculture (18) and Pasture 

(15) were reclassified to “Mosaic of Uses” (21), consolidating anthropic land use as a 

unique class. The process then follows a series of sequential operations: 

● 5-year and 4-year window filtering: The filter inspects pixels from 1986 to 2021 

(5-year window) and 1986 to 2022 (4-year window) to correct any values that have 

a particular class in the previous year (year -1), change in the current year, and 

return to the original class in the most recent year (year +2 or +3). The correction 

follows the priority order:  Savanna Formation (4), Wetland (11), Forest Formation 

(3), Grassland Formation (12), Herbaceous Sandbank Vegetation (50), Mosaic of 

Uses (21), Other Non-Vegetated Areas (25), and River, Lake, and Ocean (33). 

● 3-year window filtering: This complementary step applies a 3-year moving window 

(1986–2023) to correct isolated inconsistencies, where the class in a year differs 

from both year-1 and year+1. The same class priority order is applied to ensure 

temporal coherence across the time series. 

● Correction of the last year (2024): Two specific rules were applied to ensure the 

reliability of the most recent year: a) Pixels not classified as Mosaic of Uses (21) in 

2024 but consistently classified as such in both 2022 and 2023 were revised to 

reflect the previous consistent classification, avoiding unverified regeneration; b) 

Pixels classified as Other Non-Vegetated (25) in 2024, but not in the two preceding 

years, were corrected by retaining their 2023 classification. 
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● Stabilization of the first year (1985): If a pixel was classified as native vegetation 

(Forest, Savanna, Wetland, Grassland, or Sandbank) in both 1986 and 1987, but 

not in 1985, the 1985 classification was adjusted to match the subsequent 

consistent class, ensuring temporal consistency from the start of the series. 

● Removal of small patches of recent vegetation regrowth (2024): To avoid 

overestimating regeneration, only areas of native vegetation regrowth between 

2023 and 2024 larger than 1 hectare (≥11 connected pixels) were retained. Smaller 

patches were considered noise and replaced by their 2023 classification. 

 

5.6. No false regrowth filter 

The false regrowth filter was originally developed in Collection 9.0 to correct 

specific cases of spurious vegetation regeneration that persisted despite the application of 

the temporal filter. In Collection 10.0, this procedure was refined and expanded to include 

additional rules and classes, further improving the temporal consistency of LULC 

classification. The filter consists of a set of targeted post-classification rules designed to 

address known sources of misclassification, including spectral confusion and model 

instability, affecting specific native vegetation and land use types. 

● False forest regrowth in long-term silviculture areas: This rule addresses the 

spectral confusion between Forest Formation (3) and long-term silvicultural areas, 

which are mapped as Mosaic of Uses (21). Pixels continuously classified as class 21 

for more than 15 consecutive years are interpreted as areas of stable 

anthropogenic use. If these pixels are later classified as native forest formation, 

this transition is assumed to be erroneous, likely caused by spectral resemblance 

between mature silviculture and forest formation. The classification is therefore 

reverted to class 21, preventing the artificial inflation of forest regeneration 

statistics in the last years. 

● Correction of false wetland classifications in early years: In the early years of the 

time series (1985 and 1986), surface reflectance mosaics exhibit higher spectral 

saturation, even when using vegetation indices. This often results in spurious 

peaks for Wetlands (11), generating spurious classifications. To address this effect, 

1987 was adopted as a temporal reference year, assuming improved data quality 

and stability from that point onward. Pixels classified as wetlands in either 1985 or 

1986, but not in 1987 (or vice versa), were corrected to match the 1987 

classification. 

● Stabilization of early-term non-vegetated areas: Similar to the overestimation of 

wetlands observed in the early years, the classification of Non-Vegetated Areas 

(25) also presented inconsistencies at the beginning of the Landsat time series, 

particularly in pasture-dominated landscapes. These artifacts are attributed to the 
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spectral behavior of dry, exposed soils and sparse vegetation. In cases where class 

25 appears in 1985 or 1986 but not in 1987 (or vice versa), the earlier classification 

was adjusted to match 1987, considered more stable.. 

● Correction of isolated occurrences of Herbaceous Sandbank Vegetation: 

Herbaceous Sandbank Vegetation (50) is a native formation often located within 

protected or low-access regions. Due to the limited anthropogenic pressure in 

these zones, this class is expected to present a relatively stable temporal behavior, 

with only subtle changes over the 1985–2024 period. However, because of its 

spectral similarity to other classes (e.g., savanna and grassland), it is susceptible to 

misclassification, particularly when it appears abruptly and is not persistent. To 

correct such cases, a rule was applied: if class 50 appears in a single year with no 

presence in previous years, the pixel is reverted to its prior classification. 

 

5.7. Geomorphometric 

This filter was developed to correct false Wetland (11) classifications in areas with 

steep slopes, where the presence of this class is geomorphologically unlikely. These 

misclassifications are common in regions with complex topography or shadow effects, 

which can cause spectral confusion in optical satellite imagery. To address this issue, a 

slope map derived from the MERIT Digital Elevation Model (DEM) was employed. Slope 

values were initially calculated in degrees and converted to percent. A slope threshold 

was defined to represent the upper limit for terrain expected to support wetlands in the 

Cerrado biome. For each year from 1985 to 2024, pixels classified as Wetland and located 

on slopes equal to or greater than 9% were flagged for correction. These pixels were 

replaced by the most frequent land cover class within an 8-pixel radius, using a 

neighborhood filter. 

 

5.8. Spatial filter 

The spatial filter implemented in Collection 10.0 aims to improve classification 

accuracy by minimizing isolated errors, particularly along the edges of homogeneous pixel 

groups. This filter identifies spatially contiguous groups of pixels that share the same class. 

A minimum mapping unit of eight connected pixels (~0.72 hectares) was established. In 

practice, this means that a pixel must be connected to at least seven neighboring pixels of 

the same class to retain its classification. Pixels not meet this criterion are considered 

isolated and are reclassified using neighborhood-based rules, typically by assigning the 

most frequent surrounding class. This procedure is essential for suppressing classification 

noise and removing small, fragmented areas, thereby improving the spatial coherence of 

the final maps. 

24 



 

6. ROCKY OUTCROP CLASSIFICATION 

The classification of rocky outcrops in the Cerrado biome has undergone 

successive improvements over MapBiomas Collections, both in methodological 

refinement and in the conceptual definition of the class. Collection 7.0 introduced a beta 

version of the rocky outcrop class using a stepwise classification approach. This initial 

procedure involved an interpreter-based sample collection, followed by a two-stage 

classification process. A preliminary map was first generated and then used as a reference 

to train a second classification model. In Collection 8.0, the same stepwise logic was 

maintained; however, the spatial scope of the rocky outcrop class was significantly 

expanded, correcting the overly restricted extent observed in Collection 7.0. 

Collection 9.0 introduced a major methodological advancement by redesigning the 

entire classification workflow. A direct classification strategy using Random Forest was 

implemented, enabling the mapping of rocky outcrops across the entire Cerrado biome 

with improved visual accuracy and consistency. The most substantial changes occurred in 

Collection 10.0, which introduced both conceptual and methodological refinements. The 

class definition was revised: whereas in earlier collections included rupestrian vegetation 

within the rocky outcrop class, Collection 10.0 redefined it to include only exposed rock. 

This revised definition allows for a more objective and geologically consistent 

representation of rocky outcrops. Methodologically, the classification was further refined 

by incorporating additional geomorphometric variables and a new spectral index, 

enhancing the discrimination of exposed rocky surfaces.. 

 To avoid overestimation and ensure the class’s specificity, the rocky outcrop 

classification is performed separately from the main land use and land cover map. This 

independent approach enables the use of tailored mapping criteria, better suited for 

identifying the distinct physical and spectral features characteristics of rocky outcrops in 

the Cerrado. This class typically includes stable geological formations with clear indicators 

of sedimentary, igneous, or metamorphic origins (Figure 7). The detailed classification 

workflow is presented in Figure 8. The subsequent sections describe the methodological 

steps in detail, including the feature space (6.1), training samples, classification algorithm, 

and parameters (6.2), and the post-processing filters (6.3). 
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Figure 7. Example of landscapes mapped as Rocky Outcrop in the Collection 9.0. A) “Serra do 

Espinhaço”: A1) Landsat false-color composition (SWIR1-NIR-Red) for the year 2021. The pink 

arrow indicates the approximate location of the field photograph; A2) Field photograph (credits to 

TMbux). B) “Serra da Canastra”: B1) Landsat false-color composition (SWIR1-NIR-Red) for the year 

2021. The pink arrow indicates the approximate location of the field photograph; B2)Field 

photograph (credits to Mario L.S.C. Chaves). 

 

6.1. Feature space 

 The feature space used for rocky outcrop classification in Collection 10.0 builds 

upon the 230 predictor variables previously applied in the general land use and land cover 

mapping (Section 4.2 and Table 3). To address the specific demands of rocky outcrop 

mapping, additional variables were incorporated to improve discrimination and reduce 

misclassification with spectrally or structurally similar classes. These additions include an 

extended set of geomorphometric variables derived from the MERIT Digital Elevation 

Model (DEM) and the Geomorpho90m dataset. These variables help characterize terrain 

form and landscape position, which are particularly relevant for identifying rocky 

outcrops, as these formations typically occur in steep, rugged, and elevated 

environments. 
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Figure 8. Each gray geometry (cylinders for databases and rectangles for processes) represents a 

key step in the classification schema, with the respective name inside. The gray text near 

databases and processes offers a description of the step, while the green text highlights the main 

innovations in Collection 9.0. Arrows with a continuous black line connecting the key steps 

represent the main direction of the processing flux, while arrows with dotted black lines represent 

the databases that feed the main processes. Red text inside arrows refers to the asset type in the 

Google Earth Engine, while blue text offers a concise description of the asset content. 

 

Additionally, a set of temporal metrics was calculated using a three-year moving 

window to assess vegetation variability over time. These metrics include the NDVI 

amplitude between wet and dry seasons, the variance of the 25th percentile of NDVI, and 

the variance of the median NBR. These indicators capture patterns of spectral stability and 

disturbance, supporting the identification of exposed rock surfaces, which typically exhibit 

no vegetative cover and minimal seasonal variation. An additional spectral index, the 

Topsoil Grain Size Index (TGSI), was included to distinguish rocky substrates from bare soils 

or degraded vegetation. A full description of variables used exclusively for rocky outcrop 

mapping is provided in Table 5. 

 

Table 5. Complementary bands added to the Cerrado rocky outcrop classification feature space. 

The column “Statistic” refers to the set of per-pixel statistical reducers applied to each variable 

within the annual temporal window (April–September): a) Amplitude – range of pixel values; b) 

Median – annual median; c) Median_dry – seasonal median for dates below the first quartile of 

NDVI values (dry period); d) Median_wet – seasonal median for dates above the first quartile of 

NDVI values (wet period); e) Standard deviation – annual variation; f) Minimum – 5th percentile of 
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pixel values within the temporal window; g) Maximum – 95th percentile of pixel values within the 

temporal window. h) Identity – the variable is used directly without temporal reduction. 

Type Name Statistics Reference 

Terrain 

Elevation Identity 
MERIT DEM  

Yamazaki et al., 2017 

Aspect Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Aspect (cosine) Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Aspect (sine) Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Profile curvature Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Tangential curvature Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Convergence index Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Roughness Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Eastness Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Northness Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

TRI  
Topographic Ruggedness Index  

Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

CTI 
Compound Topographic Index 

Identity 
Geomorpho 90m 

Amatulli  et al., 2020 

Spectral 
Index 

TGSI 
Topsoil Grain Size Index 
(Red − Blue) / (Red  +  Blue + Green) 

Median, Median_dry, 
Median_wet, Minimum 
(P5), Maximum (P95), 
StdDev, Amplitude 

Xiao et al., 2006 

Temporal 
data 

NDVI amplitude (3-year) Range Celebrezze et al., 2025 

NDVI P25 variance (3-year) Variance Celebrezze et al., 2025 

NBR median variance (3-year) Variance Celebrezze et al., 2025 
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6.2. Training samples, classification algorithm, and parameters 

A total of 3,360 training samples were used across the entire classification area 

(Figure 9), combining visually interpreted samples by specialists and additional samples 

provided by the Brazilian Geological Service (SGB/CPRM). All samples were thoroughly 

reviewed to ensure alignment with the updated conceptual definition adopted in 

Collection 10.0. The training mask for general land cover categories was derived from the 

stable pixel map generated in the current collection (10.0), based on temporal consistency 

from 1985 to 2023. This mask included only pixels with stable classifications throughout 

the time series and was grouped into broader thematic classes: Forest (Forest and 

Savanna formations), Herbaceous vegetation (Grassland), Water (Wetland and Water 

bodies), and Anthropogenic (Mosaic of Uses). In contrast, reference pixels for the rocky 

outcrop class were derived from stable areas mapped in Collection 9.0, as this class was 

not included in the main classification workflow. 

 

 

Figure 9. The rocky outcrop classification area used in collection 9.0. Highlighted in orange is the 

location of the Cerrado biome in Brazilian territory. 
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Training points distribution followed a stratified sampling approach, with the 

number of samples per class proportional to its area within the classification extent. This 

ensured balanced class representation, with up to 4,400 samples for major classes and a 

minimum equal to the number of rocky outcrop samples. Classification was conducted for 

each year using the Random Forest algorithm implemented in GEE via the 

ee.Classifier.smileRandomForest function. Based on previous collections, the number of 

decision trees (ntrees) was set to 300 for all regions, and the number of variables per split 

was set to  (mtry). The model operated in multiprobability mode, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑑𝑠
generating a probability distribution across all classes. The final class for each pixel was 

assigned based on the highest probability, enhancing model robustness to spectral 

confusion and classification uncertainty. 

 

6.3. Post-classification filters 

The post-classification refinement of the rocky outcrop map followed the same 

methodological framework established in Section 5, incorporating temporal and spatial 

filters to improve classification consistency. Three main filters were applied: gap-filling, 

frequency, and spatial smoothing. 

● The gap-fill filter addressed inconsistencies and missing classifications across the 

time series. Unlike conventional unidirectional approaches, it operated 

bidirectionally (both forward and backward in time), filling undefined pixels using 

the classification of subsequent and preceding years. This ensured temporal 

continuity in cases where rocky outcrop presence was stable but temporarily 

unclassified due to spectral noise or image limitations. 

● The frequency filter reinforced the temporal stability of rocky outcrops, which are 

geologically persistent features unlikely to change. A pixel was retained as a rocky 

outcrop only if it was classified as such in at least 90% of the years within the 

observation period. This threshold effectively filtered out areas associated with 

rupestrian vegetation, which exhibits greater spectral variability and temporal 

dynamics. 

● Finally, a spatial filter was used to remove isolated pixels or small misclassified 

patches inconsistent with the typical spatial pattern of rocky outcrops. The filter 

removed connected components smaller than 15 pixels (1.35 hectares), using an 

8-neighbor connectivity criterion. 
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7. INTEGRATION 

The integration process is a critical step to ensure consistency and completeness in 

the annual land use and land cover maps. It is carried in two sequential stages. The first 

stage involves an internal integration within the Cerrado biome, in which the rocky 

outcrop classification is overlaid onto the native vegetation map generated in the main 

classification workflow. The second stage integrates cross-cutting themes developed by 

the MapBiomas initiative. These themes include additional layers such as urban 

infrastructure, agriculture, mining, and others. To harmonize the thematic layers with the 

biome-level classifications, a set of predefined prevalence rules is applied. These rules 

establish which classes take precedence in case of overlap, ensuring a standardized 

decision logic across biomes and years. The specific prevalence rules used in this 

integration process are detailed in Table 6. 

 

Table 6. General prevalence rules - MapBiomas Collection 10.0 

Class Pixel value Prevalence order Color 

Photovoltaic Power Plant 75 1  

Mining 30 2  

Beach, Dune, and Sand Spot 23 3  

Mangrove 5 4  

Aquaculture 31 5  

Hypersaline Tidal Flat 32 6  

Urban Infrastructure 24 7  

Forest Plantation 9 8  

Rocky Outcrop 29 9  

Sugar Cane 20 10  

Soybean 39 11  

Rice  40 12  

Cotton 62 13  

Other Temporary Crops 41 14  

Coffee 46 15  

Citrus 47 16  

Other Perennial Crops 48 17  

Herbaceous Sandbank Vegetation 50 18  

River, Lake, and Ocean 33 19  

Forest Formation 3 20  
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Class Pixel value Prevalence order Color 

Savanna Formation 4 21  

Wetland 11 22  

Grassland Formation 12 23  

Pasture 15 24  

Mosaic of Uses 21 25  

Other Non-Vegetated Areas 25 26  

 

Notably, exceptions to this general prevalence rule apply within areas: 

● Within protected areas, native vegetation classes (Forest Formation, Savanna 

Formation, Wetland, and Grassland — classes 3, 4, 11, and 12) take precedence 

over specific crop classes, including Cotton (62), Citrus (47), and Coffee (46). 

● Similarly, in the case of pasture (15) within protected areas, native vegetation 

classes (3, 4, 11, and 12) are preserved as the prevailing classification. 

● Outside protected areas, however, pasture (15) takes precedence over Savanna ( 

4), Wetland (11), and Grassland (12) classes. 

 

8. ACCURACY METRICS 

The accuracy analysis of Collection 10.0 was conducted using a dataset provided by 

LAPIG/UFG, consisting of 20,851 validation samples for the Cerrado, covering the period from 

1985 to 2024. The samples were classified by experts with knowledge of Cerrado vegetation, 

ensuring reliable validation. The assessment included calculations of overall and per-class 

accuracy, as well as omission and commission errors, and quantity and allocation disagreements. 

These metrics were derived from confusion matrices comparing the reference dataset with sample 

pixels from the integrated Collection 10.0 map. Figures 10 to 12 show the overall accuracy, 

allocation error, and quantity error for Cerrado land use and land cover maps. At Level 1, 

Collection 10.0 achieved an overall accuracy of 87.6%, nearly the same as Collection 9.0 (87.6%). 

However, Collection 10.0 showed a slight reduction in allocation error and a minor increase in 

quantity error compared to Collection 9.0. This suggests that Collection 10.0 improved spatial 

agreement even as class proportion deviations slightly rose. At Level 3, Collection 10.0 reached an 

overall accuracy of 80.4%, slightly higher than Collection 9.0 (80.2%). In this case, quantity 

disagreement decreased to 7.0%, while allocation disagreement increased slightly to 12.6%, 

indicating a small trade-off between spatial allocation and class proportion accuracy. These results 

position Collection 10.0 as the most refined MapBiomas product for the Cerrado, demonstrating 

significant improvements in spatial allocation consistency without sacrificing overall accuracy. All 

classification accuracy metrics are available at: https://brasil.mapbiomas.org/analise-de-acuracia/.  
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Figure 10. Global accuracy for the Cerrado biome at legend level 1 and level 3. The x-axis 

represents the years (from 1985 to 2024), while the y-axis represents the global accuracy value ( 1 

= high accuracy). The colored lines indicate the accuracy per year of the current collection (10.0 - 

red line) and the previous collections (9.0, 8.0, 7.1, 6, and 5 - orange to blue lines). The overall 

average accuracies for the last three collections are indicated in the table. 

 

 

Figure 11. Allocation error for the Cerrado biome at legend level 1 and level 3. The x-axis 

represents the years (from 1985 to 2024), while the y-axis represents the allocation error value. 

The colored lines indicate the accuracy per year of the current collection (10.0 - red line) and the 

previous collections (9.0, 8.0, 7.1, 6, and 5 - orange to blue lines). The average allocation error for 

the last three collections is indicated in the table. 
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Figure 12. Quantity error for the Cerrado biome at legend level 1 and level 3. The x-axis represents 

the years (from 1985 to 2024), while the y-axis represents the quantity error value. The colored 

lines indicate the accuracy per year of the current collection (10.0 - red line) and the previous 

collections (9.0, 8.0, 7.1, 6, and 5 - orange to blue lines). The average quantity error for the last 

three collections is indicated in the table. 
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