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1. OVERVIEW  
 

This document summarizes the specific methodologies employed for 

generating annual land use and land cover (LULC) maps of the Caatinga biome 

within the MapBiomas initiative. With each successive collection, the methodology 

evolved, incorporating either new LULC classes or revisions to existing methods. For 

instance, a key development from Collection 2.3 to 8.0 was the implementation of 

the Random Forest model for thematic classification, which replaced the 

trial-and-error parameterization used in the initial collections, BREIMAN (2001). 

For Collection 8.0, the Gradient Tree Boosting (GTB) model was 

implemented in parallel with Random Forest (RF), with the final mapping process 

determined by the model exhibiting superior performance. From Collection 9.0 

onwards, including Collection 10.0, GTB became the main classifier to mapping all 

mosaics. 

The Photovoltaic Power Plants layer is a critical, cross-cutting dataset created 

using a U-Net deep learning model in collection 10. This model was developed to 

federally map all registered photovoltaic power plants in Brazil, based on data from 

the National Electric Energy Agency (ANEEL) website. The precise geographical 

coordinates of each power plant were stored as an asset within the Google Earth 

Engine (GEE) platform, serving as the foundational database for generating image 

"patches" used to train the deep learning model. 

The table 1 summarizes the evolution of the mapping methodologies across 

different collections. This document subsequently details each step developed and 

implemented for Collection 10.0, highlighting the improvements applied to the map 

production process. Methodologies employed in previous collections are accessible 

through the MapBiomas ATBD link (https://mapbiomas.org/download-dos-atbds). 

 

 

 

 

 



Table 1. Overview of LULC collections of the Caatinga biome. 

Collection Time 
Interval Method Class Mainly Improvements 

Beta & 1 2008 - 
2015 

Empirical 
Decision 
Tree 

Forest Formation, 
Non-Forest, Water Mask. Proof of concept 

2.0  
 
 
 
2.3 

2000 - 
2016 
 
 
2000 - 
2016 

Empirical 
Decision 
Tree/ 
Random 
Forest 

Forest Formation, Savanna, 
Grassland, Mosaic of 
Agriculture and Pasture, 
Water, Other non-vegetated 
Areas. 

Land use and land cover 
samples collect  / 
Spatio-temporal filters 

3.0 & 3.1 1985 - 
2017 

Random 
Forest 

Same as Collection 2.3. 

Land use and land cover 
samples collected based on 
current classes mapped / 
Added Mosaic of Agriculture 
and Pasture class / New 
Spatio-temporal filters 

4.0 & 4.1 1985 - 
2018 

Random 
Forest 

Same as Collection 2.3  
Land use and land cover 
samples collected based on 
current classes mapped / 
New Spatio-temporal filters 

5.0 1985 - 
2019 

Random 
Forest 

Forest Formation, Savanna 
Formation, Grassland, 
Mosaic of Agriculture and 
Pasture,  
Water, Other Non-vegetated 
Area, Rocky Outcrop 
 
 

Stable points, based on 
5-years windows/ 
Feature Importance 
Analysis/New parameters for 
the RF implementation/ 
Division of processing by 
watershed/ 
New class (Rocky Outcrop) / 
Spatio-temporal filters 

6.0 1985 - 
2020 

Random 
Forest 

Same as Collection 5.0. New Mosaic Collection 

7.0 1985 - 
2021 

Random 
Forest 

Forest, Savanna, Grassland, 
Mosaic of Agriculture and 
Pasture, Water, Other 
Non-vegetated Area, Rocky 
Outcrop, Herbaceous 
Sandbank Vegetation. 

New class (Herbaceous 
Sandbank Vegetation) 

7.1 1985 - 
2021 

Random 
Forest 

Forest, Savanna, Grassland, 
Mosaic of Agriculture and 
Pasture, Water, Other 
Non-vegetated Area, Rocky 
Outcrop, Herbaceous 
Sandbank Vegetation. 

 

8.0 1985 - Random Forest, Savanna, Grassland,  



 

2. METHODOLOGY OVERVIEW 
 

The process flow diagram utilized in Collection 10.0 of the Caatinga biome is 

depicted in Figure 1. This flowchart combines a few of each node's smaller 

procedures that have been improved in this most recent collection. A few 

modifications have been made since collection 6 with the intention of enhancing the 

map classification flow's outcomes. Generally speaking, the following procedures are 

involved in creating the land cover and land use maps in the Caatinga Biome: Data 

input, sample gathering, feature selection, hyperparameter tuning, models of 

classification, post-classification filters, techniques for validation and visual 

inspection, and integration of outcomes with MapBiomas. 

2022 Forest / 
Gradient 
Tree Booster 

Mosaic of Agriculture and 
Pasture, Water, Other 
Non-vegetated Area, Rocky 
Outcrop, Herbaceous 
Sandbank Vegetation. 

9.0 1985 - 
2023 

Gradient 
Tree 
Booster/ 
cluster  

Forest, Savanna, Grassland, 
Mosaic of Agriculture and 
Pasture, Water, Other 
Non-vegetated Area, 
Herbaceous Sandbank 
Vegetation. Rocky Outcrop 

Rocky outcrop class was 
made using a cluster model 

10.0 1985 - 
2024 

Gradient 
Tree 
Booster/ 
cluster / 
Deep 
Learning 

Forest, Savanna, Grassland, 
Mosaic of Agriculture and 
Pasture, Water, Other 
Non-vegetated Area, 
Herbaceous Sandbank 
Vegetation. Rocky Outcrop, 
photovoltaic power plant 

The photovoltaic power plant 
class was mapped using the 
UNet model. 



 
 
 
Figure 1. Simplified general flowchart. 
 

For further details some improvements were added which will be described 
below (Figure 2). 



 
Figure 2. Classification process of MapBiomas Collection 10.0 (1985-2024) in the Caatinga biome. 

 

3. IMAGE PRE-PROCESING AND STUDY AREA: The 
Caatinga Biome 

3.1 LANDSAT IMAGE MOSAICS 

In the initial collections, classification relied on Landsat 5 (TM), 7 (ETM+), and 

8 (OLI) Surface Reflectance (SR) data. With Collection 6.0, we transitioned to using 

SR data exclusively. From Collection 7.0 through Collection 9.0, Landsat Collection 

2, Tier 1 (T1) Surface Temperature (ST) products were incorporated. These 

Collection 2 Landsat products were generated using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0), 

available on Google Earth Engine (GEE) via the asset IDs: 

"LANDSAT/LT05/C02/T1_L2" for Landsat 5, "LANDSAT/LE07/C02/T1_L2" for Landsat 7, 

and "LANDSAT/LC08/C02/T1_L2" for Landsat 8. 



 

 

A significant improvement for Collection 10.0 was the on-the-fly generation of 

annual and seasonal mosaics. For this, we utilized Google's asset 

"LANDSAT/COMPOSITES/C02/T1_L2_32DAY" to create comprehensive annual, dry, 

and rainy season composites. This directly supported both sample acquisition and 

classification, marking a departure from methods used in prior collections. 

Despite this advancement, we encountered a notable obstacle: the new 

mosaics exhibited a greater number of pixel gaps, particularly in areas of bare soil. 

To overcome this, we implemented a robust correction method. This involved utilizing 

mosaics from our previous methodology and applying linear regression on a 

band-by-band basis to approximate and align the two datasets. Consequently, we 

were able to seamlessly fill the pixel gaps in our new mosaics with accurate data 

derived from the earlier, more complete imagery (see example below): 

 
Figure 3: Result of linear regression between the GEE mosaic and the MapBiomas mosaic. 

The mosaics generated using the previous methodology can be accessible 

via GEE path "projects/nexgenmap/MapBiomas2/LANDSAT/BRAZIL/mosaics-2", and are 

saved in the asset project MapBiomas along with all the processing done to clean 

the data. 

The latest mosaic incorporates visible, infrared, and SWIR bands across the 

three aforementioned periods (annual, dry, and rainy seasons). Additionally, it 



includes descriptive statistics computed for the dry and wet periods, various spectral 

indices, and spectral mixing fractions, resulting in a comprehensive dataset of 142 

bands. 

3.2 DEFINITION OF THE PERIOD 

To accurately classify LULC in the Caatinga biome, the project focused on 

selecting Landsat imagery that maximizes cloud-free coverage. This was critical due 

to the Caatinga's extreme phenological changes (seasonal leaf loss) driven by its 

unique, highly seasonal rainfall patterns, the period between January to July  (with 

higher levels of rainfall). To define the best image selection periods for mosaic 

construction, they analyzed rainfall data for Brazil's Northeast region from INMET 

(1961-2015), accounting for the strong seasonality that directly impacts the 

vegetation's physiological activity. This dataset was obtained from the INMET 

(www.inmet.gov.br). 

3.3 IMAGE SELECTION 

For the selection of Landsat scenes to build the mosaics by map sheet for the 

year, within the acceptable period, a threshold of 90% of cloud cover was applied 

(i.e. any available scene with up to 90% of cloud cover was accepted). When 

needed, due to excessive cloud cover and/or lack of data, the acceptable period was 

extended to encompass a larger number of scenes to allow the generation of a 

mosaic without missing data. Whenever possible, this was made by including 

months at the beginning of the period, in the winter season. 

For the generation of the mosaics by map sheet, we used the parameters 

described (period and cloud cover). The selected Landsat scenes were processed to 

generate the temporal mosaic that covers the area of the chart. 

 

3.4 MOSAIC QUALITY 

The mosaic quality was evaluated using the frequency of each available pixel 

in the Caatinga biome (Figure 4). As a result of the selection criteria, all of them 

presented better quality, characterized by reduced noise from elements such as 

clouds, relief and cloud shadows. For Collections 4.1 through 9.0, a single change to 

http://www.inmet.gov.br


this calculation refers to the limit of the biome that was updated (IBGE, 2019). There 

is no change for Collection 10.0. 

 

 
Figure 4. Landsat pixel availability in 1985 and 2019 in the Caatinga biome. Colors refer to data pixel 
availability, where red is low, yellow is medium, and green is high. 

 

3.5. DEFINITION OF REGIONS FOR CLASSIFICATION 
 

Classifying homogenous regions helps reduce the spectral variability among 

pixels, both within and between LULC classes and allows the use of a consistent set 

of samples to classify large areas of the mosaic. However, it is a computationally 

expensive task. To address this, the Caatinga biome was divided into smaller areas 

based on watershed boundaries provided by the Agência Nacional de Águas 

(www.ana.gov.br) (Figure 5). The natural borders of the basins helped maintain the 

homogeneity of the areas and allowed for the automation of the sampling process 

using GEE's Python API. In earlier versions, level 4 watershed basins were selected, 

dividing the biome into 320 regions. 

Due to changes in biome boundaries (IBGE, 2019), additional basins were 

incorporated in Collection 5. For Collections 6.0 through 9.0, a merged version 

combining level 2 and level 4 watershed boundaries was employed, which reduced 



the Caatinga biome's division to 42 regions. In other words, watershed that are 

already small at level 2 and were very fractionated at level 4 will remain with the level 

2 polygon. In Collection 10.0, this division was further refined to 49 regions.  

 
Figure 5. Watershed basins used in the classification and sampling of the MapBiomas LULC 
collections for Caatinga biome. 
 

4. CLASSIFICATION PROCESS 

4.1 LAND COVER AND LAND USE CLASSES 

The digital classification of the Landsat mosaics in the Caatinga biome aimed 

to map ten specific LULC classes from the MapBiomas Collection 10.0 legend (Table 

2). Some of these classes were later integrated with the cross-cutting themes.  

Specifically, the Mosaic of Uses class in the Caatinga was subsequently 

refined by overlaying Agriculture or Pasture classifications. This left the Mosaic of 

Uses class predominantly in areas of temporary crops (which are very common in 

the Caatinga biome) or where it was not possible to distinguish between Agriculture 



and Pasture. Additionally, other classes like Rocky Outcrop, Other Non-Vegetated 

Areas, and Photovoltaic power plants were fine-tuned with specific, targeted 

classifications. 

Table 2. Land cover and land use classes considered for digital classification of Landsat mosaics in 
the Caatinga biome in the MapBiomas Collection 10. 

Legend class ID Natural / 
Anthropic 

Land cover / 
Land use 

General description 

1.1 Forest Formation  3 Natural Land cover Vegetation with predominance of continuous 
canopy-Savana- Estépica, Florestalada, 
Seasonal Semi-Deciduous and Deciduous 
Forest.  

1.2 Savanna 
Formation 

4 Natural Land cover Vegetation with predominance of 
semi-continuous canopy species - savanna- 
shrub savanna- savanna woodland. 

1.4 Herbaceous 
Sandbank Vegetation 

49 Natural Land cover  Herbaceous Sandbank Vegetation includes 
herbaceous plant communities dominated by 
shrubs or small trees. These species are 
frequently wide-spread and occur in coastal 
areas of Southeastern Brazil 

2.2 Grassland 12 Natural Land cover Vegetation with predominance of herbaceous 
species (steppe Savannah Grassy-Woody, 
Savanna park, Savanna Grassy-Woody. 

2.4 Rocky Outcrop 29 Natural Land cover Rocks naturally exposed on the earth's surface 
without soil cover, often with the partial 
presence of rupicolous vegetation and high 
slope. 

3.3 Mosaic of Uses 21 Anthropic Land use Use agriculture areas where it was not 
possible to distinguish between pasture and 
agriculture. 

4. Non vegetated 
Area 

22 Anthropic Land use Beach and Dune, Urban Infrastructure and 
Mining. 

4.4. Other non 
Vegetated Areas 

25 Anthropic Land cover Non-permeable surface areas (infrastructure, 
urban expansion or mining) not mapped into 
their classes and regions of exposed soil in 
natural or crop areas. Mixed class that 
includes natural and anthropic areas. 

4.6 Photovoltaic 
power plant 

75 Anthropic Land cover A "photovoltaic power plant" is a medium to 
large-scale installation designed to generate 
electricity directly from sunlight, primarily 
focused on commercializing the energy. In 
Brazil, plants with a capacity greater than 5 
MW are considered large-scale, while those 
up to 5 MW are classified as mini-generation, 
according to regulations (Law 14.182/2021; 
Law 10.438/2002; Decree 5.025/2004; 
ANEEL Resolution 127/2004). The electricity 



generated is connected to the National 
Interconnected System (SIN), which 
distributes power throughout the country. 
In terms of land use, these plants occupy 
significant areas: it's estimated that an 
installation in tropical regions requires about 
1 ha per MW using fixed modules, potentially 
varying to 2–3 ha/MW depending on 
technology (trackers) and panel arrangement. 
National examples confirm this range: the 
Nova Olinda Solar Park (292 MW across 690 
ha ≈ 2.4 ha/MW), and the Pirapora Solar 
Complex (321 MW across ≈ 1,500 ha, about 
4.7 ha/MW). 

5. Water 33 Natural / 
Anthropic 

Land cover / 
Land use 

Rivers, lakes, dams, reservoir and other water 
bodies 

6. Non Observed 27 non 
Observed 

non 
Observed 
data 

non Observed data 

 

4.2 SAMPLE PROCESS  

The most recent methodology of the sampling process was initiated in 

collection 8.0 and it has been refined continually to collection 10.0, and aims to 

establish pixel collection areas with the least uncertainty in the label, for this 

purpose, exclusion and inclusion criteria for collection areas were established.  

The exclusion criteria consider areas where there was some intra-annual 

change and could corrupt the annual spectral information. The changes considered 

are burned areas, deforested areas, areas within a buffer of gaps from clouds or 

cloud shadows and areas that show variability between consecutive years.  

The inclusion criteria consider areas where as a likely sample pixel only  in 

areas that were stable over a 3-year window. Another inclusion criterion was to 

consider those pixels with the same labels in both collection 8.0 and 9.0. To achieve 

these criteria for each region grid, sorting at least 500 samples per class was 

required, which compelled the use of the function ee.Image().stratifiedSample() to 

collect samples from small areas inside a class.  

The spectral information is essentially derived from the MapBiomas mosaic, 

but after analyzing the first set of samples, a significant number of other spectral 

indexes were calculated from the bands 'blue_median', 'green_median', 'red_median', 

'nir_median', 'swir1_median', 'swir2_median' present in the mosaic. The new indexes 



calculated were the following: "ratio", "rvi", "awei", "iia", "gemi", “gvmi”,”gcvi”,”gsavi”, 

"cvi",”gli",”ndvi”,”ndti”,"afvi","avi","bsi","brba","dswi5","lswi","mbi","ui","osavi","ri","brigh

tness", "wetness", "nir_contrast", "red_contrast". 

Until Collection 8.0, the sampling process concluded with an outlier 

elimination step. For this, the Learning Vector Quantization (LVQ) algorithm, 

specifically the ee.Clusterer.wekaLVQ() function based on Kohonen (2003), was 

employed. This clustering algorithm allowed for the grouping of all samples within 

their respective categories. Subsequently, the two largest clusters (in terms of pixel 

count) for each class were selected for analysis. Finally, each feature was retained 

based on a percentage (x%) of the class's total number, aiming for approximately 

1000 pixels per feature. Figure 6 illustrates an example of characteristics from 2020 

within Caatinga watershed basins, along with the distribution of sampled quantities 

and percentages per class. 

 

 
 

Figure 6. Map with distribution samples by class, and plot pie of distribution of the 2020 for one 
watershed region. 

 

In collection 9.0, one of the strategies used to improve the performance of the 

classifiers was to normalize the data, the mosaic for the landsat median bands and 

for each median period. Specifically for the dry period, rainy period and annual 

period in the “blue_median”, “green_median”, “red_median”, “nir_median”, “swir1_median”, 

“swir2_median” bands. The statistics for normalization were saved for each year and 

each watershed basin. With this, the Gradient Tree Boost classifier, which uses the 



gradient descent technique to minimize errors, achieves better performance with 

normalized data.  

In collection 10, a new methodology was required due to the large volume of 

collected samples. The first step involves collecting samples from pixel areas with 

lower label uncertainty. The second step combines all samples within the 49 

classification regions. The third step applies a downsampling method within each 

sample set. 

4.3 COLLECT SAMPLES PROCESS AND DOWNSAMPLING METHOD 

Sample collection prioritizes areas where pixels are least likely to have 

misclassified labels. Several aforementioned criteria serve as filters for these 

collection areas. These areas were subsequently divided into 761 grids, covering the 

49 basins (Figure 7). For Collection 10.0, 500 pixels were collected per grid for each 

class. This strategy resulted in an average of approximately 500,000 points per 

sample set (basin/year). 

 



Figure 7. Collection areas by grid and their watershed will be grouped. 
 

As mentioned earlier, the GTB classifier demands more computational power 

than RF, making it challenging to use very large sample volumes for training. This is 

precisely why we employ downsampling. This methodology allows us to extract a 

significantly smaller, yet representative, subset of the initial data, while also removing 

potential outlier pixels from the overall sample. 

4.3.1 Enhanced Probabilistic Gradient Tree Boosting Methodology 

Inspired by the "Isolation Forest" algorithm (LIU et al., 2008), we developed a 

new methodology using probabilistic Gradient Tree Boosting (GTB). This approach 

enhances the selection of training samples, replacing the previous method that relied 

on the Google Earth Engine (GEE) API. 

4.3.1 Sample Selection Process 

Our process begins by selecting subsets of samples for each year and for 

each basin within our dataset. The core idea is to refine the training data by 

identifying the most confident and representative pixels. 

Here's how it works: 

1. Initial Separation: We first separate samples belonging to the three primary 

natural vegetation classes: 

■ Forest Formation 

■ Savanna Formation 

■ Grassland Formation 

2. Probabilistic Output: For every pixel classified by the GTB model, the output 

isn't just a single class label. Instead, the model provides a probability vector 

indicating the likelihood of that pixel belonging to each class. 

Example: A probability vector like (0.2,0.85,0.12) means: 

■ 20% chance of being Forest Formation 

■ 85% chance of being Savanna Formation 

■ 12% chance of being Grassland Formation 



3. Identifying High-Confidence Candidates: Even though the pixel above would 

be ultimately labeled as "Savanna" (since 0.85 is the highest probability), the 

crucial insight comes from its high confidence score for that class. In the 

feature space (the multi-dimensional representation of the pixel's 

characteristics), the classifier effectively "sees" this pixel as having an 85% 

probability of being Savanna. This makes it an ideal candidate for inclusion in 

the training set for the Savanna class. 

4.3.2 Reducing Training Set Size 

To significantly optimize and reduce the size of the overall training dataset, we 

applied a strategic selection process: 

● For each of the natural vegetation classes, we specifically chose 100 pixels 

whose classification probabilities fell within high-confidence intervals: (0.7, 

0.75, 0.8, 0.85, 0.9, 0.95, 1.0). This ensures that only the most confidently 

classified pixels are retained for training. 

This same refined approach was also extended to agricultural classes, including: 

● Pasture 

● Agriculture 

● Mosaic of Uses (mixed land use) 

Classes with low representation in the initial dataset, such as Water, Other 

Non-Vegetated Areas and Rocky Outcrop, were not included in this specific sampling 

strategy. They had too few samples to meaningfully apply this high-confidence 

selection method. 

4.4 FEATURE SPACE AND FEATURE SELECTION PROCESS 

The feature space for digital classification of the LULC classes in the Caatinga 

biome comprised a subset of 75 features (Table 3), taken from the complete feature 

space of MapBiomas Collection 7.0 (General ATBD MapBiomas, 2020).  In 

Collection 8.0, a larger number of spectral indices were calculated to expand the 

feature space of the MapBiomas mosaic. The goal was to find a reduced space that 

offers more separability and contrast between targets.  



Table 3: Feature space subset considered in the classification of Landsat image mosaics in the 

Caatinga biome in the MapBiomas Collection 10. 

 

 

 

 

 

 

 

 



Table 4: Feature space subset indexes calculated from the estimated bands of the Landsat mosaic of 

mapBiomas in the Caatinga biome in the MapBiomas Collection 10. 

 

 

The feature space of this collection has been expanded to be more robust and 

to follow good data augmentation practices used in data science, see Table 4. 

 

The image below (Figure 8) depicts an instance of the samples corresponding 

to sub-basin “744” which have an unbalanced distribution due to the nature of the 

data. 



 
Figure 8: Distribution of samples for sub-basin 744 in the year 2000. 

Achieving separability in the feature space is a prevalent challenge when 

performing remote sensing image classification in the Caatinga Biome. Figure 9 

demonstrates that separability within a spectral band is limited for various targets in 

the image. Another way of visualizing this can be seen in the Figure 10, which plots 

the "blue_median", "green_median", "red_median", "nir_median" bands of the mosaic for 

six coverage classes. 

  
Figure 9: Box and violin plots from samples of spectral band “GREEN” in the main land cover classes 
mapped by the Caatinga team.   



 
Figure 10: Distribuição espacial de amostras para as variáveis, “blue_median”, “green_median”, 

“red_median”, “nir_median”. 

 

All watersheds were analyzed individually in terms of feature importance. 

These variables included the original Landsat reflectance bands, as well as 

vegetation indexes and spectral mixture modeling-derived variables. The first step 

was measuring the correlation between feature Collection variables  (Figure 11), and 

some variables would be eliminated from the least important criteria following the 

score. 

To calculate the correlation between the indices, the corr() function was used 

for each set of samples. The corr() function is implemented in the Pandas library of 

the python language. The python scripts were implemented in colab. 

 



 
Figure 11. Example the plot correlation of watersheds samples from the year 2020. 

Since Collection 8.0, the model has included Recursive Feature Elimination 

with Cross Validation (RFECV), an alternate feature selection method that uses 

cross-validation to automatically optimize the amount of features picked. As a result, 

for each set of data (basin / year), a list of characteristics chosen during the feature 

removal procedure was saved (ZHANG AND JIANWEN, 2009; RAMEZAN, 2022).  A 

basic example may be found at the link below: 
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html 



The RFECV() function can be accessed by using the python Sklearn library 

(Figure 12). There are two methods in which the class can be used to filter the 

selected variables: the "support_()" method and the "ranking_" method. With the 

former we can choose the surviving variables from a list of "TRUE" or "FALSE", and 

with the latter we can extract the ranking of the "TRUE" variables.  

If the number of variables in "TRUE" is less than 10, then banking consecutive 

to 1 is taken as a condition (e.g. 2,3,4,5 etc.). 

 
Figure 12: Example of the implemented feature selection function (RFECV ) and a list of selected 

variables.  

 

4.5 HYPERPARAMETER TUNING PROCESS 

A script was implemented for the Hyperparameter Tuning process after 

selecting the variable sets by drainage basin and year. The GridSearchCV() function, 

along with the Pipeline() function, is capable of testing various parameter 

combinations for the model. It is then possible to establish which combination of 

parameters represents the best score or accuracy. The parameters of the estimator 

used to apply these methods are optimized by cross-validated grid-search over a 

parameter grid. An example of the "learning rate" parameters and "n estimators" is 

shown in figure 13, where the optimal pair of parameters would be (40, 0.175). 



 

 

Figure 13. Example of the plot of combination of "learning rate" parameters and "n estimators". 

The GridSearchCV() (Grid Search Cross-Validation) is an exhaustive, or 

"brute-force," hyperparameter optimization technique, which means it can be 

computationally expensive. It operates as follows: 

1. Defining a Hyperparameter "Grid": You define a dictionary where keys are the 

hyperparameter names for your model, and values are lists of all possible 

values you want to test for each hyperparameter. This creates a "grid" of 

every possible combination. (See Figure 14 for an illustration). 

2. Exhaustive Training and Cross-Validation: For each hyperparameter 

combination within your defined grid, GridSearchCV() performs the 

following steps: 

● It trains the model using cross-validation. This involves splitting the 

training dataset into k "folds" (subsets). The model is then trained k times; 

each time, it uses k-1 folds for training and one fold for validation. 

● The model's performance is evaluated on each validation fold using a 

pre-defined scoring metric (e.g., accuracy, F1-score, Mean Squared Error 

(MSE), etc.). 



● The final score for that specific hyperparameter combination is the 

average of the scores obtained across all k folds. 

3. Selecting the Best Combination: After evaluating all possible combinations in 

the grid via cross-validation, GridSearchCV() identifies the combination of 

hyperparameters that yielded the best average validation score. 

4. Final Model Refitting: Once the optimal hyperparameter combination is found, 

GridSearchCV() (by default, if refit=True) retrains the model using the 

entire original training dataset with these winning hyperparameters. This 

ensures you have a robust final model trained on all available data. 

Part of the code implemented for selecting optimal parameters is shown in the 

following image (Figure 14). Each pair of optimal parameters for year and 

hydrographic region is saved in a single json file.  

 
Figure 14: Part of the code implemented for the Hyperparameter tuning process. 

 

For each watershed sample, a list of variables was kept for eventual use in 

the classification process. All the codes used in this stage are available in the 

repository of MapBiomas's Github (https://github.com/mapbiomas-brazil/caatinga). 

 



4.5 Classification algorithm  

 
During the classification process, the input data is adjusted to allow the 

MapBiomas mosaics to be classified by hydrographic basin and year. The data is 

then displayed using a GEE script and reviewed by the team's analysts to assess the 

classification results by basin and year. The primary objective of this step is to 

identify regions that require additional samples or classification parameter changes. 

Once identified, these areas are included in the map correction cycle. As explained 

before in collection 8.0, two algorithms were simultaneously reviewed. One is 

generated using the Random Forest classification (BREIMAN 2001), and the other is 

the result of the Gradient Tree Booster classification (LAWRENCE et al. 2004). An 

example of the parameters for GTB classifiers is shown in figure 15.  

 
Figure 15: Example parameters for the Gradient Tree Boost classifiers. 

For the classes of Forest Formation, Savanna Formation, Grassland Formation, 

Pasture, Agriculture, Mosaic of Uses, Other Non-Vegetated Areas, and Water 

Bodies, the Gradient Tree Boosting (GTB) classifier is applied. This process uses 

a specific sample set, a predefined list of spectral bands, a set of classifier 

parameters, and a dictionary indicating the percentage of samples per class for each 

region/year processed in the construction of the map series that compose the 

collection. 

Each classification version undergoes a set of stringent criteria, including accuracy, 

smoothness of area curves across the entire series, and spatial coherence. These 

criteria determine whether the map series for a given region demonstrates superior 

quality compared to the same region in previous collections. 

The Rocky Outcrop class presents significant mapping challenges due to its 

inherent spectral mixture, often combining exposed soil with sparse grasses or small 



plants growing amidst the rocks. To address this complexity, our mapping effort 

leveraged data from the Geological Survey of Brazil (SGB), which provides presence 

points for these outcrops. 

We demarcated these outcrop areas using polygons that encompassed over 80% of 

the outcrop's extent. Within these polygons, we applied an unsupervised clustering 

algorithm, specifically ee.Clusterer.wekaXMeans implemented in Google Earth 

Engine (GEE), configured to produce a maximum of three clusters, PELLEG AND 

MOORE (2000). From the resulting raster output, we identified the cluster value 

corresponding to the rocky outcrop class and then selected all such areas across the 

Caatinga Biome. 

While this clustering process for identifying rocky outcrops is time-consuming, it 

proved fundamental. It provided a robust foundation for constructing a high-quality 

dataset of labeled image patches (or "chips") essential for training subsequent Deep 

Learning models. 

 

4.5.1 CLASSIFIER RANDOM FOREST 

The Random Forest algorithm is a bagging (Bootstrap Aggregating) 

ensemble method. It builds multiple independent decision trees, each trained on a 

random sample of the data (with replacement) and utilizes a random subset of 

features. The final prediction is determined by aggregating the individual tree 

predictions, typically through majority voting for classification tasks or by averaging 

for regression tasks (BREIMAN, 2001).  

Advantages of Random Forest: 

● High Accuracy and Robustness: Generally offers high performance and is 
less prone to overfitting compared to individual decision trees, as aggregating 
predictions from many trees reduces variance. 

● Handles High-Dimensional Data Well: Can efficiently manage datasets with 
many features. 

● Handles Missing Data and Outliers: It's relatively robust to missing data and 
outliers, as tree splits are less affected by extreme values. 



● Feature Importance: Provides a measure of feature importance, helping 
identify which variables are most relevant for prediction. 

● Parallelizable: Trees are built independently, allowing for parallel training and 
speeding up the process on large datasets. Therefore, within GEE it is 
possible to build more than 100 trees with a large training set and not have 
memory errors or time outs. 

● Fewer Parameters for Tuning: Generally requires less hyperparameter tuning 
compared to Gradient Boosting. 

Disadvantages of Random Forest: 

● Less Interpretable: It's considered a "black-box model" because combining 
many trees makes interpreting the final model more difficult than a single 
decision tree. 

● May Not Be Best for Imbalanced Data: Can have a bias towards the majority 
class in imbalanced datasets. Techniques like resampling or class weights 
can mitigate this. This is considered the biggest weakness for the satellite 
image classification process, because both the samples and the presence of 
classes within the images are unbalanced. 
 

4.5.2 CLASSIFIER GRADIENT TREE BOOSTING  

Gradient Tree Boost (GTB) is a boosting ensemble method that builds 

decision trees sequentially. Each new tree built in sequence is used to correct the 

errors (residuals) of the preceding tree, with the goal of minimizing a specific loss 

function. 

Advantages of Gradient Tree Boosting: 

● High Accuracy: Frequently achieves state-of-the-art accuracy in many 
problems, outperforming Random Forest in some cases, especially when 
well-tuned. 

● Ability to Capture Complex Patterns: By iteratively correcting errors, it's very 
good at capturing non-linear relationships and complex interactions in the 
data. 

● Handles Imbalanced Data Well: Can handle imbalanced datasets more 
effectively by focusing on difficult-to-predict examples (those with larger 
residuals). This property fits perfectly into the challenge of classifying 8 cover 
classes within a large volume of Landsat images. 

● Flexibility: Can be optimized for a variety of loss functions, making it 
applicable to various problem types (regression, classification, ranking, etc.). 



● Feature Importance: Similar to Random Forest, it also provides measures of 
feature importance. This property is widely used in the selection of bands and 
spectral indices to be used during the final classification process. 

Disadvantages of Gradient Tree Boosting: 

● More Prone to Overfitting: Because it builds trees sequentially and focuses on 
errors, GTB is more susceptible to overfitting, especially on noisy data or if 
hyperparameters aren't tuned carefully.  This property makes the process of 
acquiring training samples, the feature selection process and the 
hyperparameter tuning process rigorous in this work. 

● Slower to Train: Training is sequential, meaning it cannot be parallelized as 
easily as Random Forest, resulting in longer training times. Therefore, the 
construction of many trees within the GTB causes the processing on the GEE 
platform to time out memory. 

● Sensitive to Hyperparameters: Requires more careful and extensive tuning of 
hyperparameters (such as learning rate, number of trees, and maximum 
depth) to achieve optimal performance. 

● Sensitive to Outliers: By focusing on reducing residuals, outliers can have a 
disproportionate impact, leading the model to "learn" the noise. 

Since Collection 9.0, we prioritized using Gradient Tree Boosting because: 

● Maximum accuracy is crucial due to working with highly seasonal data, 
specifically annual mosaics for the Caatinga biome. Therefore, even though it 
requires more time to fine-tune the hyperparameters, we selected the model 
that achieves the best accuracy. 

● New methodologies for cleaning the training datasets ensure that the model 
performs better than previous models. 

● Imbalanced datasets are a natural property of remote sensing data, and GTB 
can be more effective at learning minority classes by focusing on errors. 

 

 

5. POST-CLASSIFICATION 

The temporal filter rules were specifically adapted to account for the 

phenological and spectral dynamics of the land cover classes characteristic of the 

Caatinga biome. In addition to the standard temporal consistency checks, custom 

rules were incorporated to handle anomalous transitions—particularly cases in which 

a class appears abruptly in a pixel’s time series. These adjustments aim to improve 

classification stability and reduce spurious temporal fluctuations in areas with high 

seasonal variability and low vegetation cover. 



5.1 Gap Fill filter 

This filter aims to fill data (pixels) in images that do not have observations. In 

practice, if no valid “future” position is available, the value with no data is replaced by 

its previous valid class. In this way, only gaps with no observation remain with no 

data, figure 16. 

 

Figure 16: Example of the process gap fill. 

5.2 Spatial filter 

The applied spatial filter targets isolated or weakly connected pixels by using 

a connectivity-based mask. Specifically, it identifies pixels that are connected to five 

or fewer adjacent pixels of the same class. These pixels are then replaced with the 

statistical mode of their 8-connected neighborhood, effectively smoothing local noise 

while preserving spatial coherence. 

5.3 Temporal filter 

 
The applied temporal filter replaces pixels with faulty transitions with those 

from succeeding years. In the first step, the filter searched for any natural class 

(3-FOREST FORMATION, 4-SAVANNA FORMATION, 12-GRASSLAND, 

13-OTHERS NO FOREST FORMATION) that was not this class in 1985 but was 

equivalent to these classes in 1986 and 1987, and then rectified the 1985 class to 

avoid regeneration in the first year. In the second step, the filter looked at the pixel 

value from last year that was not 21-MOSAIC OF AGRICULTURAL OR PASTURE 

but was equal to 21-MOSAIC OF AGRICULTURAL OR PASTURE in the preceding 

two years. The value in last year was then converted to 21-MOSAIC OF 

AGRICULTURAL OR PASTURE to avoid any regeneration in the last year.The third 



stage looked at a 3-year moving window to fix any values that had altered in the 

middle year and return to the same class the following year. This method was used 

in the following order: [33-RIVER, LAKE, OCEAN, 13-OTHERS NO FOREST 

FORMATION, 4-SAVANNA FORMATION, 29-ROCKY OUTCROP, 21-MOSAIC OF 

AGRICULTURAL OR PASTURE, 3-FOREST FORMATION, 12-GRASSLAND]. The 

fourth and final stage was identical to the previous one, but it employed a four- and 

five-year moving window to modify all middle years. 

5.4 Frequency filter 

A frequency filter was applied only in pixels that were considered “stable 

natural vegetation” (at least all series of years as [3-FOREST FORMATION, 

4-SAVANNA FORMATION, 12-GRASSLAND]). If a “stable natural vegetation” pixel 

was at least 80% of the years of the same class, all years were changed to this 

class. The result of this frequency filter was a more stable classification between 

natural classes (ex: forest and savanna). Another significant improvement was the 

fluctuation decrease in the extreme years of the mapped series  (i.e. 1985 and 

2019).  

6. INTEGRATION 

The final classification results, incorporating post-classification filters, are 

integrated with the data from the cross-cutting themes across the entire historical 

series (1985–2024). Ultimately, the final integrated map for the Caatinga biome 

features 20 classes at level 3 of the Collection 10.0 legend (Figure 16). 



 
Figure 16. Final land use and land cover map of the Caatinga biome (2024). 

7. VALIDATION STRATEGIES 

The validation stage of each process was created using independent 

validation points provided by LAPIG/UFG. We used all points that both interpreters 

considered the same class, resulting in more than 85,000 validation points. The 

figure below shows the result of the accuracy analysis for the level 3 legend of the 

MapBiomas Collection 10.0 (1985-2024)  (Figure 17). The metrics showing are 

historical and global accuracy, allocation disagreement and quantity disagreement. 



 
Figure 17. Accuracy of level 3 of MapBiomas Collection 10.0 in the Caatinga biome (1985-2024). 
 

The approach used in this collection was more accurate than previous 

collections. Table 5 has the numbers that demonstrate these outcomes. Figures 18 

and 19 illustrate the errors of omission and commission. By analyzing these data, we 

may determine which classes are confused with others in the categorization. And 

based on these results, we can devise a new strategy to reduce those errors of 

commission and omission. 

 

Figure 18. Commission errors of the land cover and land use mapping in the Caatinga. 



 

Figure 19. Omission errors of the land cover and land use mapping in the Caatinga. 

Table 5. The evolution of the Caatinga mapping collections in the MapBiomas Project, its periods, 
mapped classes, brief methodological description, and global accuracy in Level 1, 2, and 3, with 34 

years the points of references. 

Collection Method Global Accuracy 

3.1 Random Forest Level 1: 80.0 % 
Level 2: 78.2 % 
Level 3: 71.3 % 

4.1 Random Forest Level 1: 81.9 % 
Level 2: 79.9 % 
Level 3: 74.3 % 

5.0 Random Forest Level 1: 81.8 % 
Level 2: 80.0 % 
Level 3: 75.4 % 

6.0 Random Forest Level 1: 82.8% 
Level 2: 76.6 % 
Level 3: 74.9 % 

7.1 Random Forest Level 1: 83.7 % 
Level 2: 78.8 % 
Level 3: 76.9 % 

8.0 Random Forest / Gradient Tree 
Booster 

Level 1: 83.6 % 
Level 2: 78.2 % 
Level 3: 76.9 % 

9.0 Gradient Tree Booster Level 1: 84.6 % 
Level 2: 79.4 % 
Level 3: 79.3 % 

10.0 Gradient Tree Booster Level 1: 84.6 % 
Level 2: 79.4 % 



Level 3: 79.3 % 

 

 

 
 
Figure 20. Plot of Accuracy of level 3 of MapBiomas Collections 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0 in the 
Caatinga biome (1985-2024 years). 
 

If we plot all values in the accuracy series, we can better compare and 

observe all of the data from the different collections (Figure 20). Another technique to 

assess the quality of a map series is to examine the area's behavior in relation to 

each class of land cover across time. Figure 21 depicts time series plots of area by 

cover class. In addition, the areas of the two collections prior to the 10.0 collection 

are plotted. This type of analysis makes it possible to compare the areas of the 

classes throughout the series with other previously published collections. At this 

point, it is possible to understand where and why there have been changes from one 

collection to another. 

 



 

Figure 21. Time series of level 3 classes of MapBiomas Collection 10.0 in the Caatinga biome 
(1985-2024 years) per area (ha). The green, brown and red lines represent the corresponding areas 
of collections 7.1, 8.0 and 9.0. 
 
 

Another way of validating the coverage data was to compare the areas of the 

classes between collections. For this analysis we used a rule implemented by the 

Pampa team that accounts for coincidences (Figure 22). 

 
Figure 22: Concordance table between collections 6.0, 7.1 and 8.0. 

With this analysis we can infer how much area is being mapped with the same 

class, how much area is varying between classes from one collection to another and 

when these disagreements occurred last year. Regions in the north and center of the 

Caatinga and the Chapada Diamantina show the greatest disagreements (Figure 



23). These places of greatest discordance indicate where new samples should be 

collected and used to find the correct class. They also indicate areas where the 

pixels in the mosaic have clouds, noise or shadows. 

 
Figure 23: Pixel coincidence model between collections 6.0, 7.1 and 8.0. 

The statistics over the series show that on average 76 % of the pixels are 

coincident between the 3 collections (Figure 24). This percentage is higher than the 

accuracy of the last three collections, which indicates that this measure does not 

indicate the quality of the maps, but rather areas with high stability between 

collections. 



 
Figure 24: Statistics of the areas of agreement for collections 6.0, 7.1 and 8.0. 

Based on this analysis, the question arises as to which classes are affected 

by large areas of disagreement. Thus, if we analyze the last two collections by cover, 

then the models would indicate where the pixels are that were classified as 

savannah in collection 7.1, for example, and are not in collection 8.0, as well as 

those that are now in collection 8.0 and were not in collection 7.1, figures 25a and 

25b. 

 

Figure 25a: Cover models for Forest Formation, Savannah Formation and Grassland Formation, for 

collections 7.1 and 8.0. In gray areas of coincidence, in blue areas only in the 7.1 collection and in red 

areas that were only mapped for the 8.0 collection. 



 

Figure 25b: Cover models for Forest Formation, Savannah Formation and Grassland Formation, for 

collections 7.1 and 8.0. In gray areas of coincidence, in blue areas only in the 7.1 collection and in red 

areas that were only mapped for the 8.0 collection. 

Land covers with a greater presence in the caatinga, such as savannah 

Formation, have more than 80% agreement between the last two collections, see 

figure 26. 

 
Figure 26: Areas of concordant pixels between collections 7.1 and 8.0. 

An analysis of coincidences can be made using maps from other sources. To 

do this, we used the map from the Brazilian Institute of Geography and Statistics 

(IBGE), available on the download page of the institute's platform. The comparison 

was made to homogenize each of the land cover classes from the IBGE product with 

the MapBiomas maps (Figure 27). 



 
Figure 27: Unified legend between IBGE classes and Mabiomas classes. 

 

Figure 28: Coincidence Map of Caatinga using the IBGE LULC and MapBiomas LULC for the year 

2000. 

The greatest coincidences are found in areas to the west and north of the 

Caatinga where there are large expanses of savannah and in the south-east of the 

Caatinga where there is a high presence of pasture (Figure 28).  

In seven years of IBGE maps, the differences with the MapBiomas cover 

maps was approximately 50% for all years (Figure 29). 

 
Figure 29: Areas of concordant pixels between the IBGE and mapbiomas maps for the years 2000, 

2010, 2015, 2020. 
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