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1. Overview
This document presents the methodology developed to map urban areas in Brazilian

territory from 1985 to 2023 for Collection 9 of the MapBiomas Project. Following the general

methods of MapBiomas, urban areas mapping employs supervised machine learning

classification using annual aggregated Landsat images.

Each collection's series of urban area maps has been refined through conceptual and

methodological improvements. In addition to updating ancillary datasets and satellite

images, new procedures for this collection include sample adjustments, vegetation

classification, and complementary analyses. These analyses involve intersecting urban

areas with categorical layers such as slope classes, risk areas, and slums.

The methodological procedures involve mosaic production, sample development,

training and classification, threshold selection, spatial filtering, temporal filtering, and

exporting results to the MapBiomas workspace (Figure 1). After this, all MapBiomas project

classes are integrated. The classification stages developed by the urban areas mapping

team are detailed in the following sections, with codes available on the MapBiomas GitHub1.

Figure 1. Basic scheme of urban areas maps production.

Since Collection 6, we have adopted as class name the term “Urban/Urbanized Area”

(UA) instead of “Urban Infrastructure” in order to cope with the terminology applied in urban

studies, such as IBGE (2017). UA are areas with predominance of significant density of

buildings, roads and infrastructure. It should be noted that when making external quantitative

comparisons, it is crucial to ensure that the chosen concepts are aligned.

1 The GitHub contains all the versions of MapBiomas urban areas mapping codes. To the present
collection, the following branch must be selected
https://github.com/mapbiomas-brazil/urban-infrastructure/tree/mapbiomas90.
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2. Landsat image mosaics

Landsat 5, Landsat 7, Landsat 8 and Landsat 9 imagery were used to create annual

mosaics for mapping Urban Area in Collection 9.0, according to Table 1.

Table 1. Landsat imagery used in Urban Area mosaics.

Landsat
Collection Sensor Collection Level Bands [wavelength]

Landsat 5
Level 2,
Collection 2,
Tier 1 1

TM 2 Surface
Reflectance

SR_B1: Blue [0.45-0.52 μm]
SR_B2: Green [0.52-0.60 μm]
SR_B3: Red [0.63-0.69 μm]
SR_B4: Near Infrared [0.77-0.90 μm]
SR_B5 : Shortwave Infrared 1 [1.55-1.75 μm]
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm]

Landsat 5 TM
Collection 2
Tier 1
Raw Scenes 2

TM 2 Raw
Images

B4: Near infrared [0.76 - 0.90 μm]
B5: Shortwave infrared 1 [1.55 - 1.75 μm]
B6: Thermal Infrared 1 (resampled from 60m

to 30m) [10.40 - 12.50 μm]

Landsat 7
Level 2,
Collection 2,
Tier 1 3

ETM+ 2 Surface
Reflectance

SR_B1: Blue [0.45-0.52 μm]
SR_B2: Green [0.52-0.60 μm]
SR_B3: Red [0.63-0.69 μm]
SR_B4: Near Infrared [0.77-0.90 μm]
SR_B5 : Shortwave Infrared 1 [1.55-1.75 μm]
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm]

Landsat 7
Collection 2
Tier 1
Raw Scenes 4

ETM+ 2 Raw
Images

B4: Near Infrared [0.77 - 0.90 μm]
B5: Shortwave Infrared 1 [1.55 - 1.75 μm]
B6_VCID_1: Low-gain Thermal Infrared 1

(resampled from 60m to 30m)
[10.40 - 12.50 μm]

Landsat 8 and
9 Level 2,
Collection 2,
Tier 1 5

OLI /
TIRS 2 Surface

Reflectance

SR_B2: Blue [0.45 - 0.51 μm]
SR_B3: Green [0.53 - 0.59 μm]
SR_B4: Red [0.64 - 0.67 μm]
SR_B5: Near Infrared [0.85 - 0.88 μm]
SR_B6: Shortwave Infrared 1 [1.57 - 1.65 μm]
SR_B7: Shortwave Infrared 2 [2.11 - 2.29 μm]

Landsat 8 and
9 Collection 2
Tier 1 Raw
Scenes 6

OLI /
TIRS 2 Raw

Images

B5: Near infrared [0.85 - 0.88 μm]
B6: Shortwave infrared 1 [1.57 - 1.65 μm]
B10: Thermal infrared 1 (resampled from 100m

to 30m) [10.60 - 11.19 μm]
1 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2
2 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1
3 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
4 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1
5 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 and
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
6 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1 and
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1
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Mosaics were created following these steps:

1. Filter Landsat Collections scenes by date (year-by-year, from 1985 to 2023) and

bounds (Brazilian territory).

2. Mask pixels of clouds and cloud shadows in all scenes, using pixel quality attributes

generated by the CFMASK2 algorithm, using pixel quality, is in QA_PIXEL band.

3. Scale surface reflectance values to 0 to 1, using values of scale (-0,2) and offset

(0.0000275) informed in collections’ bands description in each reference page.

4. Calculate selected spectral indexes and fractions from spectral mixture analysis for

each scene (Table 2).

5. Apply an appropriate reducer to each band/index to obtain one pixel value per year

(Table 2).

6. Calculate reduced indexes difference to capture intra-annual changes (Table 2).

7. Composite all bands and indexes to obtain one mosaic per year.

Table 2. List, description, reducer, and script acronym used in Urban Areas mosaic (continue).

Band / Index /
Fraction Description Reducer Script acronym

BLUE Landsat band median BLUE_median

GREEN Landsat band median GREEN_median

RED Landsat band median RED_median

NIR Landsat band median NIR_median

SWIR1 Landsat band median SWIR1_median

SWIR2 Landsat band median SWIR2_median

NDVI Normalized Difference Vegetation Index median NDVI_median

EVI1 Enhanced Vegetation Index 1 median EVI_median

EVI1 Enhanced Vegetation Index percentiles 10th percentile,
90th percentile

EVI_p10
EVI_p90

EVI1 Enhanced Vegetation Index percentiles
difference difference EVI_dif9010

EVI2 Enhanced Vegetation Index 2 median EVI_median

EVI2 Enhanced Vegetation Index percentiles 10th percentile,
90th percentile

EVI2_p10
EVI2_p90

EVI2 Enhanced Vegetation Index percentiles
difference difference EVI2_dif9010

MNDWI Modified Normalized Difference Water
Index median MNDWI_median

NDWI Normalized Difference Water Index median NDWI_median

2 CFMask is a multi-pass algorithm that uses decision trees to prospectively label pixels in the scene;
it then validates or discards those labels according to scene-wide statistics. It also creates a cloud
shadow mask by iteratively estimating cloud heights and projecting them onto the ground. Reference:
https://www.usgs.gov/core-science-systems/nli/landsat/cfmask-algorithm.
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Band / Index /
Fraction Description Reducer Script acronym

NDBI Normalized Difference Built-Up Index median NDBI_median

NBR Normalized Burn Ratio median NBR_median

NDRI Normalized Difference Road Index median NDRI_median

BAI Bare Soil Area Index median BAI_median

UI Urban Index median UI_median

NDUI Normalized Difference Urban Index median NDUI_median

BSI Bare-Soil Index median BSI_median

BU Built-up Index median BU_median

GV Green Vegetation Fraction median GV_median

NPV Non Photosynthetic Vegetation Fraction median NPV_median

SOIL Soil Fraction median SOIL_median

CLOUD Cloud Fraction median CLOUD_median

SHADE Shade Fraction median SHADE_median

GVS Green Vegetation + Soil Fraction median GVS_median

NDFI Normalized Difference Fraction Index median NDFI_median

SUBS Substrate Fraction median SUBS_median

VEG Vegetation Fraction median VEG_median

DARK Dark Fraction median DARK_median

EBBI Enhanced Built-Up and Bareness Index median EBBI_median

EBBI Enhanced Built-Up and Bareness Index
percentiles

25th percentile,
90th percentile

EBBI_p25
EBBI_p90

EBBI Enhanced Built-Up and Bareness Index
percentiles difference difference EBBI_dif7525

EBBI Positive part of the Enhanced Built-Up
and Bareness Index median EBBIsNeg_median

EBBI Positive part of the Enhanced Built-Up
and Bareness Index percentiles

25th percentile,
90th percentile

EBBIsNeg_p25
EBBIsNeg_p75

EBBI
Positive part of the Enhanced Built-Up

and Bareness Index percentiles
difference

difference EBBIsNeg_dif7525
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3. Classification

3.1. Classification algorithm
The Random Forest algorithm implemented in Google Earth Engine

(smileRandomForest) was applied to map Urban Areas in MapBiomas Collection 9.0 using

training datasets of points in urban and non-urban areas.

To reduce computational cost, the automatic classification was performed only in

“search areas”, defined by polygons where urban areas were likely to be found. A uniform

hexagonal polygon grid was created over Brazilian territory and intersected with urban

census tracts (IBGE, 2021)3, resulting in a search area of 226 million ha, covering 27% of

the Brazilian territory.

Urban materials are reported to be highly spatially and temporally diverse. In time,

diversity is related to the urbanization process itself. For example, in 1985, the streets of

Humaitá (located inAmazonas State) were sparse and predominantly unpaved. Today, these

same streets are paved and form part of a denser urban environment. Additionally, roofs and

pavements display varied spectral behavior depending on their materials, colors, aging, and

coating (such as algae, lichen, dirt, dust, rubber tire marks, etc.) (HEROLD et al., 2004).

To cope with the diversity of urban cover types, different random forest classifiers

were built. We divided Brazil territory into 558 tiles that correspond to charts with a scale of

1:250.000, derived from the International Map of the World (IMW). Tiles with no search area

were discarded, resulting in 522 valid tiles. Then, a specific classifier was trained to each of

these tiles of each year of the 39 years of the Collection 9.0.

Random Forest parameters were set to 500 trees and 20 minimum leaf populations.

The classification result is an image assigning to each pixel its probability of being urban.

3.2. Training Samples

Training samples were obtained from OpenStreetMap database (OpenStreetMap,

2018) combined with nightlight images (NOAA), land cover and land use maps from the

Third National Inventory (MCTI, 2015) and built-up maps of the Global Human Settlement

Layer (GHSL), provided by Joint Research Center (JRC) (Corbane et al., 2019).

Firstly, a preliminary urban mask was built based on pathways from OpenStreetMap

database, representing all roads, streets, sidewalks, and unknown roads already registered

3 Census tracts are classified according to their situation. To build the search areas, we
considered tracts in the following situations: (1) urban area with high density of buildings, (2) urban
area with low density of buildings and (3) urban nucleus.
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by OpenStreetMap users. Pathways within the urban patches or conglomerates of specific

categories (residential, service, path, and living street) were selected. Then, pathways

outside urban areas were removed using a nightlight image (NOAA) (Figure 2). For specific

years, pathways were also filtered by existing data: built-up surfaces maps of the Global

Human Settlement Layer (GHSL) for 1985, and urban area mappings of the Third National

Inventory (MCTI, 2015), for 1994, 2002, and 2010. A buffer of approximately 100 meters

distance of each pathway transformed these filtered pathways into areas.

Figure 2. Example of filters used on the vector layer of OpenstreetMap in Rio de Janeiro - RJ
Brazil.

Secondly, an explorative classification of urban areas using indexes of normalized

difference of vegetation and water (NDVI and NDWI) was produced to mask water and

vegetation (Figure 3).

The final urban mask was obtained by the intersection of the preliminary mask,

derived from OpenStreetMaps polylines and filtered by ancillary data, with the explorative

classification (Figure 4 and Figure 5). The final non-urban mask is the symmetrical difference

of the final urban mask.
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Random points were generated in each of the 522 tiles observing the extension of

urban area and non-urban area, according to the final urban mask (Figure 6). The final

sample dataset comprises an average of 2,000 urban and non-urban points per tile in the

initial years, increasing to 4,000 points in the final years of the time series.

Figure 3. Explorative classification results for Rio de Janeiro - RJ, Brazil.

Figure 4. Final urban mask for Rio de Janeiro- RJ, Brazil.
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Figure 5. Final non urban mask (orange color) for Rio de Janeiro - RJ, Brazil.

Figure 6. Random points divided by urban areas (red) and non-urban areas (blue).

Random forest algorithm is sensitive to imbalanced training data set (Breiman, 2001).

Since its primary goal is to minimize the overall error rate, results tend to focus on accurately

predicting the majority class, non-urban areas, causing a decrease in accuracy for the

minority class, urban areas. To avoid this, we empirically determined a balance of urban and
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non-urban points to each tile and sequence of years (1985-1993, 1994-2001, 2002-2009,

2010-2017 and 2018-2023), overestimating the urban areas in relation to non-urban areas.

Considering all tiles, the average balance of samples was as follows: between 1985-1993, 1

urban sample to 2.7 non-urban samples; between 1994-2009, 1 urban sample to 2

non-urban samples, between 2010-2017, 1 urban sample to 1.9 non-urban samples; and in

the final years (2018-2023), 1 urban sample to 1.7 non-urban samples.

3.3. Feature space

The feature space that characterizes Urban Areas for MapBiomas Collection 9.0 is

the dataset of urban and non-urban points trained with 43 variables from Landsat image

mosaics (summarized in Table 1, Section 2), calculated for each tile.

Datasets of urban and non-urban samples were used with the assumption that once

a point was urban, it remained urban for the following years. Therefore, images of 1985 up to

1993 were used to train the dataset of 1985, resulting in one feature space per year per tile.

Likewise, images of 1994 up to 2002 were used to train the dataset of 1994, images of 2003

up to 2009, to train the dataset of 2003, images of 2010 up to 2017, to train the dataset of

2010 and images of 2018 up to 2023, to train the dataset of 2018.

A neighborhood approach was adopted in tiles without feature space due to the lack

of urban samples or lack of cloud-free data. In these cases, the nearest tile with a feature

space was used, resulting in 421 tiles with feature spaces for each year (Figure 7).

Figure 7. Feature space’s tiles.
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4. Spatial and Temporal Filters

The spatial and temporal filters were configured to enhance the classification

considering the diversity of materials and features of the urbanized areas across various

Brazilian municipalities from 1985 to 2022. These procedures resulted in a binary raster

which indicated urban and non-urban areas.

4.1 Spatial Filter

The classifier can assign high values of UA probability to non-urban areas such as

mining, sands, rural structures, and others. Conversely, the presence of trees and squares in

the urban context can result in low probability values for those pixels. Setting universal

probability thresholds for assigning a pixel to a UA would lead to errors due to the varying

characteristics of different cities. To address this, the thresholds for defining UA were set

within the spatial filter code, which combined other data and contexts. The layers used in this

process are presented in Table 3.

Table 3. Layers and thresholds for the spatial filter.
Layer Description Threshold criteria Why use it?

IRS The Index of Roads and
Infrastructure (IRS) defines urban
limits according to roads and
infrastructure density. Quantitative
layer.

Values greater than or equal
to 500 (JUSTINIANO et al.,
2022).

Provides a general
mask layer
identifying where
urban areas must
be.

VIIRS Visible Infrared Imaging
Radiometer Suite (VIIRS) defines
general regions where urban areas
can be found according to night
light values. Quantitative layer.

Greater than or equal 1.

Census tracts Census tracts from official data
define urban limits according to
census criteria and official
organism. Qualitative layer.

Tracts with urban
characterization (types 1, 2
and 3) (IBGE, 2020).

Slums Slums, provided by official data,
define regions where there are
human populations with specific
vulnerabilities around or within
urban perimeter. Qualitative layer.

All the regions were
considered.

UA
(probability)

Urban areas (UA) classification
determines the probability of
urban areas based on RF applied
to time series data. Quantitative
layer.

Defined using 'best
threshold algorithm'.

Provides the urban
classification

Given that UA typically have higher population densities and light emission at night,

raster files from the Visible Infrared Imaging Radiometer Suite (VIIRS), aboard the Suomi

NNP satellite’s Day Night Band were used. The threshold value of the VIIRS band and the
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annual UA probability values were established through an algorithm that calculates the best

threshold for each grid per year of the time series (see urban areas GitHub).

The result of applying filters based on threshold values per year is a raster with

values zero and one, where the latter value is associated with the urban area. This raster

often reveals isolated pixels or small clusters of pixels with values different from their

surroundings. In the urban areas, small clusters of isolated zero-value pixels are typically

associated with squares, boulevards, water, trees, and other urban elements. In non-urban

areas, isolated one-value pixels may correspond to agricultural structures, summer homes,

and other non-urban structures.

Spatial filters also perform morphological operations to refine the classification.

Circular kernels with one pixel as a neighborhood are used to conduct these operations.

Morphological closing operations remove holes with fewer than 60 clustered pixels, while

morphological opening operations eliminate noise consisting of fewer than 5 pixels.

4.2 Temporal filter

Temporal filters (TF) were applied to ensure classification consistency over time,

taking into account the conceptual aspects defined for the mapped category. The sequence

of filters, indicated and described in Table 4, was developed for this purpose. General rules

(GR) were established for the middle years, while specific rules were defined for the first

years (FYR) and last years (LYR) of the time series for each TF. Temporal consistency was

determined based on results obtained by pixel over a period of 3 to 5 years (kernel) for the

immediately preceding TF results.
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Table 4. Descriptions of TFs used.

TF Scope Type Years
Kernel

Conditionals
i-2 i-1 i i+1 i+2 i+3

1 It acts on the pixels
that were classified as
‘UA’ in the SF results
and sets the mask for
the filters up to TF2.

FYR 1985 and 1986 x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the kernel, then the ‘UA’ is validated to the next step.

GR 1987 to 2021 x x x x x If the pixel under analysis is classified as ‘UA’ within three or more
years of the interval, then the ‘UA’ is validated to the next step.

LYR 2022 to 2023 x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the interval, then the ‘UA’ is validated to the next step.

2 It acts on pixels that
have been validated
as ‘UA’ in the TF1

results.

GR 1985 to 2020 x x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the range, then the ‘UA’ is validated to the next step.

LYR 2021 and 2022 x x x x If the pixel is classified as ‘UA’ within two or more years of the
range, then the ‘UA’ is validated to the next step.

LYR 2023 x x x If the pixel is classified as ‘UA’ within two or more years of the
range, then the ‘UA’ is validated to the next step.

3 Extends the filter
mask and acts on

pixels not classified
as urban in TF2.

FYR 1985 x The results obtained for TF2 are assumed.

GR 1986 to 2022 x x x If the pixel is classified as ‘UA’ for i-1 and i+1, then ‘UA’ is assigned.

LYR 2023 x x If the pixel is rated 'UA' for i-1, then 'UA' is assigned.

4 Area Consolidation
Filter.

FYR 1985 x x If a pixel under analysis is rated 'UA' for i and not rated for i+1, then
it becomes unranked.

FYR 1986 x The results obtained for TF3 are assumed.

GR 1986 to 2023 x x If a pixel under analysis is classified as 'UA' for i, then for i+1 it will
also be.

FYR = firsts years rules; GR = general rule; LYR = lasts years rules.
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5. Comparison between Collections
5.1 Area

Figure 7 presents urban growth comparing the current collection to the previous

ones. The results suggest that the criteria adopted in this collection have been more

comprehensive over time, leading to a more homogeneous and conceptually compatible

classification process. This is particularly perceived by the area curve from 1985 to 1994,

where the actual procedures impacted the results avoiding unexpected changes. Also, an

average increase of 17% is noticeable when the curve is compared with results from the

Collection 8.0, improving the results related to omission errors - except when compared to

Collection 6.0.

Figure 7. Comparison between growth of urbanized areas for Collections

5.2 Performance

The validation analysis was performed using point samples collected by the

Laboratory of Image Processing and Geoprocessing (LAPIG), University of Goiás-GO,

Brazil. According to the reference data, (i) the samples of Urban Areas (UA) that were

correctly classified are the True Positives; (ii) the samples of UA that were classified as not

UA are the False Negatives; and (iii) the samples of non-UA that were classified as UA are

the False Positives.
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The comparison of accuracy results between Collection 6.0, Collection 7.1, Collection

8.0, and Collection 9.0 are shown in Figure 9 and Figure 10. Figure 9 shows that omission

errors in the latest collection were smaller than in the previous ones, except for Collection

6.0. However, the commission errors were larger and more concentrated in the first 15 years

of the time series.

Figure 9. Omission (Producer’s accuracy).
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Figure 10. Commission (User’s accuracy).

6. Reference Maps

MapBiomas Collection 9.0 were compared to two urban area maps: (1) the World

Settlement Footprint (WSF) produced by Deutsches Zentrum für Luftund Raumfahrt (DLR)

(MARCONCINI et al., 2020) and (2) Brazil Urbanized Areas produced by IBGE, Instituto

Brasileiro de Geografia e Estatística (IBGE, 2022).

WSF is a 10m resolution binary mask outlining the extent of human settlements

globally derived by means of 2014-2015 multitemporal Landsat-8 and Sentinel-1 imagery,

using different classification schemes based on Support Vector Machines. It is available at

Earth Engine Data Catalog4.

Quantitative analysis (Table 5) shows that the urbanized areas mapped for 2015 by

MapBiomas Collection 9.0 amount to 3,691,485 hectares, which is 8.3% more than the

corresponding data reported by the WSF for the same reference year. This discrepancy can

be attributed to the higher resolution of the WSF data (10 meters) compared to the

MapBiomas data (30 meters). The overlap between these two mappings is 81% when

considering the entirety of Brazilian territory. By biome, it is observed that the Caatinga has

the lowest overlap at 75%, whereas the Amazon and Cerrado biomes exhibit overlaps

exceeding 83%.

4 https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1
17
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Table 5. Quantitative analysis between MapBiomas Collection 9.0 and WSF 2015.

Year: 2015 MapBiomas
Collection

9.0

WSF
2015

Overlap:
MapBiomas

Collection 9.0
and WSF 2015

Overlap in
relation to
WSF 2015

MapBiomas
Collection

9.0 in relation
to WSF 2015

Biome (in ha) (in ha) (in ha) (in %) (in %)

Amazon 415.601 310.982 259.461 83,4% 133,6%

Caatinga 387.973 337.939 252.974 74,9% 114,8%

Cerrado 861.114 724.210 606.411 83,7% 118,9%

Atlantic Forest 1.895.438 1.910.032 1.539.472 80,6% 99,2%

Pampa 126.005 120.837 99.858 82,6% 104,3%

Pantanal 5.354 4.596 3.729 81,1% 116,5%

Brazil 3.691.485 3.408.597 2.761.906 81,0% 108,3%

Brazil Urbanized Areas is a visual interpretation of urban features, identified

according to the elements of specific shape (geometry of objects) and pattern (spatial

arrangement). It is based on Sentinel 2 imagery, with spatial resolution of 10m. It is available

in shapefile format at IBGE’s website5. The mapped urban land use types include:

"Urbanized Area," categorized into two classes — high density and low density —, "Other

Urban Facilities," and "Vacant Urban Development." Considering the definition of “Urban

Areas” adopted by MapBiomas, the comparative analysis was carried out by evaluating the

following classes from the IBGE mapping: "Urbanized Area - High Density," "Other Urban

Facilities," and "Vacant Urban Development".

The comparison with IBGE’s 2019 data points to an underestimation of MapBiomas

Collection 9.0 urban area. For the year 2019, IBGE reports 4.3 million hectares, whereas

MapBiomas reports 3.9 million hectares. This underestimation is reported in MapBiomas

accuracy assessment. This discrepancy is speculated to be attributed to the different

classification methods: visual interpretation used by IBGE versus semi-supervised

classification employed by MapBiomas.

The overlap between MapBiomas Collection 9 and IBGE 2019 is higher compared to

that with WFS 2015, at 86.4% versus 81% respectively. However, the overlap by biome

shows consistent results in both comparative analyses: the Caatinga biome has the lowest

overlap, while the Cerrado and Amazon biomes exhibit the highest overlap.

5

https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15789-areas-urbanizadas.htm
l?=&t=acesso-ao-produto
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Table 6. Quantitative analysis between MapBiomas Collection 9.0 and IBGE 2019 (selected

classes).

Year: 2019 MapBiomas
Collection

9.0

IBGE
2019

Overlap:
MapBiomas

Collection 9.0
and IBGE 2019

Overlap in
relation to
IBGE 2019

MapBiomas
Collection

9.0 in relation
to IBGE 2019

Biome (in ha) (in ha) (in ha) (in %) (in %)

Amazon 431,610 397,735 315,081 79.2% 108.5%

Caatinga 447,490 531,115 340,936 64.2% 84.3%

Cerrado 915,453 857,191 697,174 81.3% 106.8%

Atlantic Forest 2,001,045 2,332,943 1,745,393 74.8% 85.8%

Pampa 129,413 165,387 119,470 72.2% 78.2%

Pantanal 5,467 4,687 3,663 78.2% 116.6%

Brazil 3,930,477 4,289,058 3,221,718 86.4% 91.6%
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