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1. OVERVIEW

This document summarizes the specific methods used to generate land cover

and land use annual maps for the Caatinga biome in the context of MapBiomas. With

each new collection, there was an increase in the number of land cover and land use

classes or a revision of the employed method. For instance, from Collection 2.3

onwards, the Random Forest method started to be used in thematic classification,

and the parameterization was no longer based on trial and error.

In collection 9.0, another model was used, the Gradient Tree Boost. The latter

was implemented with the idea of measuring the performance of each classification

output together with Random Forest and finalizing the mapping process with the

model with the best performance.

For both models, an input parameter selection and optimization were

achieved via algorithm applications. Another example pertains to the feature space,

which is no longer selected by an empirical method, but feature selection algorithms

capable of not only reducing dimensionality but also selecting the best features for

the classification model. Table 1 summarizes the evolution of the methods used in

the preparation of maps by collection and throughout the document each step

developed and used in the Collection 9.0 is described, as well as the improvements

applied to the production of these maps. Other methods used in previous collections

can be accessed at ATBD of MapBiomas

(https://mapbiomas.org/download-dos-atbds).

Table 1. A brief review of the evolution of Caatinga collections, their intervals, methods, mapped classes, and
the main improvements.

Collection Time
Interval Method Class Main Improvements

Beta & 1 2008 - 2015
Empirical
Decision
Tree

Forest Formation, Non-Forest,
Water Mask. Proof of concept

2.0

2.3

2000 - 2016

2000 - 2016

Empirical
Decision
Tree/

Random
Forest

Forest Formation, Savanna,
Grassland, Mosaic of
Agriculture and Pasture, Water,
Other non-vegetated Areas.

Land use and land cover
samples collect /
Spatio-temporal filters



3.0 & 3.1 1985 - 2017 Random
Forest

Same as Collection 2.3.

Land use and land cover
samples collected based on
current classes mapped / Added
Mosaic of Agriculture and
Pasture class / New
Spatio-temporal filters

4.0 & 4.1 1985 - 2018 Random
Forest

Same as Collection 2.3
Land use and land cover
samples collected based on
current classes mapped / New
Spatio-temporal filters

5.0 1985 - 2019 Random
Forest

Forest Formation, Savanna
Formation, Grassland, Mosaic
of Agriculture and Pasture,
Water, Other Non-vegetated
Area, Rocky Outcrop

Stable points, based on 5-years
windows/
Feature Importance
Analysis/New parameters for
the RF implementation/
Division of processing by
watershed/
New class (Rocky Outcrop) /
Spatio-temporal filters

6.0 1985 - 2020 Random
Forest

Same as Collection 5.0. New Mosaic Collection

7.0 1985 - 2021 Random
Forest

Forest, Savanna, Grassland,
Mosaic of Agriculture and
Pasture, Water, Other
Non-vegetated Area, Rocky
Outcrop, Wooded Sandbank
Vegetation.

New class (Wooded Sandbank
Vegetation)

7.1 1985 - 2021 Random
Forest

Forest, Savanna, Grassland,
Mosaic of Agriculture and
Pasture, Water, Other
Non-vegetated Area, Rocky
Outcrop, Wooded Sandbank
Vegetation.

8.0 1985 - 2022

Random
Forest /
Gradient
Tree

Booster

Forest, Savanna, Grassland,
Mosaic of Agriculture and
Pasture, Water, Other
Non-vegetated Area, Rocky
Outcrop, Wooded Sandbank
Vegetation.

9.0 1985 - 2023

Gradient
Tree

Booster/
cluster

Forest, Savanna, Grassland,
Mosaic of Agriculture and
Pasture, Water, Other
Non-vegetated Area, Wooded
Sandbank Vegetation.
Rocky Outcrop

Rocky outcrop class was made
using a cluster model



2. CLASSIFICATION METHOD

A more compact flowchart of the Caatinga biome mapping process in

Collection 9.0 is shown in Figure 1. A few methodological modifications have been

made since collection 6 with the intention of improving the map classification. The

general procedures used for creating the land use and land cover (LULC) maps for

the Caatinga Biome comprise: Data input, sample gathering, feature selection,

hyperparameter tuning, models of classification, post-classification filters, validation

and visual inspection, and integration with MapBiomas crosscutting themes.

Figure 1. Simplified general flowchart.

Some improvements are illustrated with more detail in Figure 2 and are following
described .



Figure 2. Classification process of MapBiomas Collection 9.0 (1985-2023) in the Caatinga biome.

2.1 Landsat Image Mosaics

In previous collections, the classification was performed by using Landsat 5

(TM), Landsat 7 (ETM+), and Landsat 8 (OLI). Up to Collection 6.0, we used data

from the surface reflectance (SR) data, and from Collection 7.0 onwards we used

Landsat Collections 2 surface temperature (ST) products. These Collections 2 were

created with the Landsat Ecosystem Disturbance Adaptive Processing System

(LEDAPS) algorithm (version 3.4.0) available on GEE as id asset

"LANDSAT/LT05/C02/T1_L2" for Landsat 5, "LANDSAT/LE07/C02/T1_L2'' for
Landsat 7, and "LANDSAT/LC08/C02/T1_L2" for Landsat 8.

The mosaic building can be accessible via the path

"projects/nexgenmap/MapBiomas2/LANDSAT/BRAZIL/mosaics-2", and it is saved in

the asset project MapBiomas along with all the processing done to clean the data.



This mosaic includes fractions from spectrum unmixing, 119 spectral bands between

spectral indices, and descriptive statistics computed for dry and wet seasons.

2.2 Definition of the period

In order to minimize confusion caused by extreme phenological changes

between different types of natural vegetation and other land use and land cover

(LULC) categories, such as cropland, the image selection period for the Caatinga

biome was defined with the goal of maximizing the coverage of Landsat images after

cloud removal/masking. The Caatinga climate, which varies greatly in seasonal

precipitation compared to most other Brazilian biomes, is the principal driver of the

physiological activity of plants throughout the year. The bulk of caatinga vegetation is

categorized as seasonal, exhibiting significant deciduousness throughout the year.

Therefore, to define the periods for the mosaic construction, we used the rainfall data

of the Northeast region of Brazil, considering the strong seasonal component in this

region. Initially, an evaluation of the entire available time series (1961-2015) was

made. This dataset was obtained from the INMET (www.inmet.gov.br).

The data evaluation was performed through visual inspection of the annual

graphs and historical averages for each of the climatic stations with data available for

the Caatinga biome (Figure 3).

Figure 3. Location of the weather stations which rainfall series were evaluated for the selection of the mosaic

periods in the Caatinga biome.



Then, a periodic window scan was carried out for the entire Caatinga biome,

indicating that the period between January and July (with higher rainfall in the

Caatinga biome) (Figure 4) is more likely to provide images with spectral contrast

capable of separating different LULC categories for the biome. The choice of these

sets of parameters helped to define the mosaics with better spectral quality and

fewer amounts of noise and clouds in the images for the biome.

Figure 4. Temporal variation of monthly mean precipitation (Precipt), evapotranspiration (ET), and potential

evapotranspiration (ET) in the Caatinga biome.

2.3 Image selection

For the selection of Landsat scenes to build the annual mosaics by map

sheet, within the acceptable period, a threshold of 90% of cloud cover was applied

(i.e. any available scene with up to 90% of cloud cover was accepted). When

needed, due to excessive cloud cover and/or lack of data, the acceptable period was

extended to encompass a larger number of scenes to allow the generation of a

mosaic without missing data. Whenever possible, this was made by including

months at the beginning of the period, in the winter season.



2.4 Mosaic quality

The mosaic quality was evaluated by computing the frequency of each

available pixel during the selected period in the Caatinga biome (Figure 5). As a

result of the selection criteria, all of them presented satisfactory quality (i.e less noise

such as clouds, relief and clouds shadows.). In Collections 4.1, 5.0, 6.0, 7.0 and 8.0,

a single change to this calculation refers to the Caatinga biome boundary, that was

updated (IBGE, 2019). There is no change for Collection 9.0.

Figure 5. Example of Landsat pixel availability for the mosaics of 1985 and 2019 in the Caatinga biome. Colors
refer to pixel availability, where red is low, yellow is medium, and green is high.

3. DEFINITION OF REGIONS FOR CLASSIFICATION

A classification done in homogenous regions reduces the variability between

the spectral values of the pixels, both within each LULC category as between

categories, and allows the use of the same set of samples to classify large areas of



the mosaic. However, given that this is a computationally expensive task, we divided

the biome into smaller areas based on watershed boundaries available by the

Agência Nacional de Águas (www.ana.gov.br) (Figure 6). By taking these natural

borders, we aimed higher homogeneity within each area, allowing for the automation

of the sampling process using GEE's Python API. In earlier collections, the level 4 of

watershed boundaries was used and the biome was divided in 320 regions.

Due to the the update of the boundaries of the biomes (IBGE, 2019) in

Collection 5, some additional basins were included.In Collections 6.0, 7.1, 8.0 and

9.0 we used another division merging bettwen level 2 and level 4 watershed

boundaries, resulting in a final division of the Caatinga biome into 42 regions, figure

6.

Figure 6. The Caatinga watersheds used in the classification and sampling of the latter MapBiomas collections.



4. CLASSIFICATION

4.1 Land cover and land use classes

The digital classification of the Landsat mosaics in the Caatinga biome sought

to map a subset of ten LULC classes from the MapBiomas legend in Collection 9.0

(Table 2). Some of these classes were later integrated with the cross-cutting themes.

The Mosaic of Uses class in the Caatinga was overlaid by the Agriculture or Pasture

classes, remaining only in areas of temporary crops (very common in the Caatinga

biome) or where it was not possible to distinguish between these two classes. Other

classes were tuned with specific classifications, such as Rocky Outcrop and Other

non Vegetated Areas.

Table 2. Land cover and land use classes considered for digital classification of Landsat mosaics in the Caatinga
biome in the MapBiomas Collection 9.0.

Legend class ID Natural /
Anthropic

Land cover /
Land use

General description

1.1 Forest Formation 3 Natural Land cover Vegetation with predominance of
continuous canopy-Savana- Estépica,
Florestalada, Seasonal Semi-Deciduous
and Deciduous Forest.

1.2 Savanna
Formation

4 Natural Land cover Vegetation with predominance of
semi-continuous canopy species -
savanna- shrub savanna- savanna
woodland.

1.4 Wooded
Sandbank Vegetation

49 Natural Land cover Wooded Sandbank Vegetation includes
herbaceous plant communities dominated
by shrubs or small trees. These species
are frequently wide-spread and occur in
coastal areas of Southeastern Brazil

2.2 Grassland 12 Natural Land cover Vegetation with predominance of
herbaceous species (steppe Savannah
Grassy-Woody, Savanna park, Savanna
Grassy-Woody.

2.4 Rocky Outcrop 29 Natural Land cover Rocks naturally exposed on the earth's
surface without soil cover, often with the
partial presence of rupicolous vegetation
and high slope.

3.3 Mosaic of Uses 21 Anthropic Land use Use agriculture areas where it was not
possible to distinguish between pasture
and agriculture.

4. Non vegetated 22 Anthropic Land use Beach and Dune, Urban Infrastructure



Area and Mining.

4.4. Other non
Vegetated Areas

25 Anthropic Land cover Non-permeable surface areas
(infrastructure, urban expansion or
mining) not mapped into their classes
and regions of exposed soil in natural or
crop areas. Mixed class that includes
natural and anthropic areas.

5. Water 33 Natural /
Anthropic

Land cover /
Land use

Rivers, lakes, dams, reservoir and other
water bodies

6. Non Observed 27 non
Observed

non
Observed
data

non Observed data

4.2 Sample process and feature selection

The most recent methodology of the sampling process was initiated in

collection 8.0. The spectral information of samples this collection were updated and

joined with the samples data of collection 9.0. The first criterion was to exclude

areas where there have been changes in coverage in the year of the mosaic. As

changes we considered burned areas, deforested areas, areas within a buffer of

gaps from clouds or cloud shadows, and areas that show variability between

consecutive years. The second was to consider only areas that were stable over a

3-year window and match its class with the same class in the previous year´s

collection. To achieve these criteria for each region, sorting at least 1500 samples

per class was required, which compelled the use of the function

ee.Image().stratifiedSample() to collect samples from small areas inside a class.

Also, to correct the imbalance of samples occasionally generated due to insufficient

samples in a region, sample pixels were collected manually in the mosaic for the

years 2016 and 2021, filtered by the same criteria mentioned above. Additionally,

samples from collection 8.0 that met the criteria of the collection 9.0 were selected

using the cluster noise removal filters.

The spectral information is essentially derived from the MapBiomas mosaic,

but after analyzing the first set of samples, a significant number of other spectral

indexes were calculated from the bands 'blue_median', 'green_median', 'red_median',

'nir_median', 'swir1_median', 'swir2_median' present in the mosaic. The new indexes

calculated were the following: "ratio", "rvi", "awei", "iia", "gemi", "cvi", "gli", "afvi", "avi",



"bsi", "brba", "dswi5", "lswi", "mbi", "ui", "osavi", "ri", "brightness", "wetness", "nir_contrast",

"red_contrast".

The areas from which the samples were collected were subjected to four

conditional layers: one indicating the areas of coincidences pixels, figure 21, another

indicating the areas of stable pixels over a 5-year period, areas where no

deforestation occurred in the last three years of the series, and areas with no fire

scars. In this fashion, the gathered points were placed in a folder within the

MapBiomas file, with each feature collection denoting the region and year.

The final step with the sampling process was to eliminate outliers by class.

The Learning Vector Quantization algorithm was then implemented in the function

ee.Clusterer.wekaLVQ() from Kohonen (2003). This cluster algorithm enables the

grouping of all samples in the new category. The first two sets of clusters with more

pixels in each class were then chosen for analysis. Later, each feature was kept as

50 % of the number class, with a quantity of around 1000 pixels.

In collection 9.0, one of the strategies used to improve the performance of the

classifiers was to normalize the data, the mosaic for the landsat median bands and

for each median period. Specifically for the dry period, wet period and annual period

in the “blue_median”, “green_median”, “red_median”, “nir_median”, “swir1_median”,

“swir2_median” bands. The statistics for normalization were saved for each year and

each region. With this, the Gradient Tree Boost classifier, is minimized using the

gradient descent technique to minimize errors, achieves better performance with

normalized data. The Random Forest also improves its performance as it excludes

outliers from the mosaics with normalization, fitting the pixel values withint the same

range of the sample pixel values.

4.3 Feature space

The feature space for digital classification of the LULC classes in the Caatinga

biome comprised a subset of 75 features (Table 3), taken from the complete feature

space of MapBiomas Collection 7.0 (General ATBD MapBiomas, 2020). In

Collection 8.0, a larger number of spectral indices were calculated to expand the

feature space of the MapBiomas mosaic. The goal was to find a reduced space that

offers more separability and contrast between targets. The figure 7, depicts an



instance of the samples corresponding to watershed “744” which have an

unbalanced distribution due to the nature distribution the class cover on real regions.

Figure 7: Distribution of samples for sub-basin 744 in the year 2000.

Achieving separability in the feature space is an important challenge when

performing remote sensing image classification in the Caatinga Biome. Figure 8

demonstrates that separability within a spectral band is limited for various targets in

the image.

Another way of visualizing this can be seen in Figure 9, which plots the

"blue_median", "green_median", "red_median", "nir_median" bands of the mosaic for six

coverage classes.



Figure 8: Box and violin plots from samples of spectral band “GREEN” in the main land cover classes mapped by
the Caatinga team. In axis X have class cover and axis Y espectral values from band green.

Figura 9: Spatial distribution of samples for variables, “blue_median”, “green_median”, “red_median”,

“nir_median”.



Table 3: Feature space subset considered in the classification of Landsat image mosaics in the Caatinga biome

in the MapBiomas Collection 8.

The feature space of collection 9.0 has been expanded to be more robust and

to follow good data augmentation practices used in data science (Table 4).



Table 4: Feature space subset indexes calculated from the estimated bands of the Landsat mosaic of

mapBiomas in the Caatinga biome in the MapBiomas Collection 9.0.

All regions were analyzed individually in terms of feature importance. These

variables included the original Landsat reflectance bands, as well as vegetation

indexes and spectral mixture modeling-derived variables. The first step was

measuring the correlation between feature Collection variables (Figure 10), in order

to eliminate some variables from the least important criteria following the score.

To calculate the correlation between the indices, the corr() function was used

for each set of samples. The corr() function is implemented in the Pandas library of

the python language. The python scripts were implemented in colab.



Figure 10. Example plot of correlation between variables of samples from year 2020.

Since Collection 8.0, the model includes Recursive Feature Elimination with

Cross Validation (RFECV), an alternate feature selection method that uses

cross-validation to automatically optimize the amount of features picked. As a result,

for each set of data (basin / year), a list of characteristics chosen during the feature

removal procedure was saved (ZHANG AND JIANWEN, 2009; RAMEZAN, 2022). A

basic example can be found at:

https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with

_cross_validation.html

https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html


The RFECV() function can be accessed by using the python Sklearn library

(Figure 11). There are two methods in which the class can be used to filter the

selected variables: the "support_()" method and the "ranking_" method. With the

former we can choose the surviving variables from a list of "TRUE" or "FALSE", and

with the latter we can extract the ranking of the "TRUE" variables.

If the number of variables in "TRUE" is less than 10, then banking consecutive

to 1 is taken as a condition, e.g. 2,3,4,5 etc.

Figure 11: Example of the implemented feature selection function (RFECV ) and a list of selected variables.

A script was implemented for the Hyperparameter Tuning process after

selecting the variable sets by regions and year. The GridSearchCV() function, along

with the Pipeline() function, is capable of testing various parameter combinations for

the model. It is then possible to establish which combination of parameters

represents the best score or accuracy. The parameters of the estimator used to

apply these methods are optimized by cross-validated grid-search over a parameter

grid. An example of the "learning rate" parameters and "n estimators" is shown in

figure 12, where the optimal pair of parameters would be (40, 0.175).



Figure 12. Example plot of combination of "learning rate" parameters and "n estimators".

Part of the code implemented for selecting optimal parameters is shown in

Figure 13. Each pair of optimal parameters for year and region is saved in a single

json file.

Figure 13: Part of the code implemented for the Hyperparameter tuning process.



For each set of sample, a list of variables was kept for eventual use in the

classification process. All the codes used in this stage are available in the repository

of MapBiomas's Github (https://github.com/mapbiomas-brazil/caatinga).

4.4 Classification algorithm, training samples, and parameters

During the classification process, the input data is adjusted to allow the

MapBiomas mosaics to be classified by regions and year. The data is then displayed

using a GEE script and visual inspection by the team's analysts to assess the

classification results by regions and year. The primary objective of this step is to

identify regions that require additional samples or classification parameter changes.

Once identified, these areas are included in the map correction cycle. During each

round of classification, two versions are simultaneously reviewed. One is generated

using the Random Forest classification (BREIMAN 2001), and the other is the result

of the Gradient Tree Booster classification (LAWRENCE et al. 2004). An example of

the parameters for both classifiers is shown in Figure 14. The final version of the

classification was done for all regions and years with samples from the same subset

used for all years, and it was trained in the same mosaic of the classified year.

Figure 14: Example parameters for the Random Forest and Gradient Tree Boost classifiers.

https://github.com/mapbiomas-brazil/caatinga


5. POST-CLASSIFICATION

The rules of the post-classification filters were adapted to the cover classes

used in the Caatinga biome. Like other biomes, it follows the sequence of fill-gap

filter, spatial filter, temporal filter, spatial filter and temporal filter. How these filters

work is described below.

5.1 Gap Fill filter

This filter aims to fill in data (pixels) in the image that do not have

observations. For this filter, the time series of raster maps from the classification is

used. Landsat images from the last years of the series have more satellites and

consequently the annual mosaics are created with more images and fewer pixel

gaps. The filter works by searching, for each pixel gap, the first pixel with a value in

the historical series.

5.2 Spatial filter

The spatial filter uses a mask to change only pixels connected to five or fewer

pixels of the same class. These pixels were replaced by the MODE value of its eight

neighbor’s pixels.

5.3 Temporal filter

The temporal filter replaces pixels with faulty transitions with those from

succeeding years. In the first step, the filter searched for any natural class

(3-FOREST FORMATION, 4-SAVANNA FORMATION, 12-GRASSLAND,

13-OTHERS NO FOREST FORMATION) that was not this class in 1985 but was

equivalent to these classes in 1986 and 1987, and then reclassified the 1985 class to

avoid regeneration in the first year. In the second step, the filter looked at the pixel

value from last year that was not 21-MOSAIC OF AGRICULTURAL OR PASTURE

but was equal to 21-MOSAIC OF AGRICULTURAL OR PASTURE in the preceding

two years. The value in last year was then reclassified to 21-MOSAIC OF

AGRICULTURAL OR PASTURE to avoid any regeneration in the last year. The third

stage looked at a 3-year moving window to fix any values that changed in the middle

year and return to the same class the following year. This method was used in the

following order: [33-RIVER, LAKE, OCEAN, 13-OTHERS NO FOREST



FORMATION, 4-SAVANNA FORMATION, 29-ROCKY OUTCROP, 21-MOSAIC OF

AGRICULTURAL OR PASTURE, 3-FOREST FORMATION, 12-GRASSLAND]. The

fourth and final stage was identical to the previous one, but it employed a four- and

five-year moving window to modify all middle years.

5.4 Frequency filter
A frequency filter was applied only in pixels that were considered “stable

natural vegetation” (at least all series of years as [3-FOREST FORMATION,

4-SAVANNA FORMATION, 12-GRASSLAND]). If a “stable natural vegetation” pixel

was at least 80% of the years of the same class, all years were changed to this

class. The result of this frequency filter was a more stable classification between

natural classes (ex: forest and savanna). Another significant improvement was the

fluctuation decrease in the extreme years of the mapped series (i.e. 1985 and 2023).

6. ANALYSIS OF SECONDARY VEGETATION

Another data produced from the land use and coverage maps is secondary

vegetation data. The methodology for creating these layers can be found in:
https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2024/04/Deforestation-_-Secondary

-Vegetation-Appendix-ATBD-Collection-8.docx.pdf, Figure 15.

Primary vegetation is formed by the following cover classes: Savannah

Formation, Forest Formation and Grassland Formation. The areas of these three

classes are distributed as follows: 96% Savannah Formation, 3% Forest Formation

and 1% Grassland Formation. Secondary vegetation is considered to be vegetation

that was mapped as vegetation after being deforested after the first year of the 1985

series. The distribution of this secondary vegetation is as follows: 96% Savannah

Formation, 3% Forest Formation and 1% Grassland Formation. As highlights, we

have that the loss of primary vegetation will reach 20 million hectares by 2023,

corresponding to 34% of all primary vegetation in 1985. Recovery per year has an

average of between 4 and 8 thousand hectares.

https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2024/04/Deforestation-_-Secondary-Vegetation-Appendix-ATBD-Collection-8.docx.pdf
https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2024/04/Deforestation-_-Secondary-Vegetation-Appendix-ATBD-Collection-8.docx.pdf


Figure 15: Map of the Primary vegetation and anthropic areas of year 2023.

To understand how the loss of primary vegetation by cover class behaved,

see Figure 16, as well as the increase in secondary vegetation by cover class in the

historical series from Figure 17. A relationship between the suppression of primary

vegetation and the suppression of secondary vegetation can be seen in Figure 18.



Figure 16: Primary Vegetation Areas by Cover Class for the Historical Series 1986-2023.

Figure 17: Secundary Vegetation Areas by Cover Class for the historical series 1986-2023.



Figure 18: Primary and Secundary Vegetation of suppression areas for the historical aeries 1987-2023.

7. VALIDATION STRATEGIES

The validation stage of each process was created using independent

validation points provided of the team of Laboratório de Processamento de Imagens

e Geoprocessamento (Lapig) from Universidade Federal de Goias. We used all

points that at least two interpreters considered the same class, resulting in more than

85,000 validation points. Figure 19 shows the result of the accuracy assessment for

the level 3 legend of the MapBiomas Collection 9.0 (1985-2023). For each year,

overall accuracy, allocation disagreement and quantity disagreement (Pontius &

Millones, 2011) were computed, and from them the correspondent average values

for the whole series.



Figure 19. Accuracy of level 3 of MapBiomas Collection 9.0 in the Caatinga biome (1985-2023).

The approach used in this collection allowed to obtain higher accuracy than

previous collections (Table 5). Figures 20 and 21 illustrate omission and commission

errors. By analyzing these data, it is possible to determine which classes are

confused with others and then devise a new strategy to reduce commission and

omission errors.

Figure 20. Commission errors of the land cover and land use mapping in the Caatinga biome from year 2022.



Figure 21. Omission errors of the land cover and land use mapping in the Caatinga biome from year 2022.

Table 15 shows the evolution of overall accuracy results across collections 3.1 and

9.0. Also the different classification algorithms used.

Table 15. The evolution of the Caatinga mapping collections in the MapBiomas Project, with classification

methods and overall accuracy in Level 1, 2, and 3, based on 34 years with reference points.

Collection Method Overall Accuracy

3.1 Random Forest Level 1: 80.0 %
Level 2: 78.2 %
Level 3: 71.3 %

4.1 Random Forest Level 1: 81.9 %
Level 2: 79.9 %
Level 3: 74.3 %

5.0 Random Forest Level 1: 81.8 %
Level 2: 80.0 %
Level 3: 75.4 %

6.0 Random Forest Level 1: 82.8%
Level 2: 76.6 %
Level 3: 74.9 %

7.1 Random Forest Level 1: 83.7 %
Level 2: 78.8 %
Level 3: 76.9 %

8.0 Random Forest / Gradient Tree
Booster

Level 1: 83.6 %
Level 2: 78.2 %
Level 3: 76.9 %

9.0 Gradient Tree Booster Level 1: 84.6 %
Level 2: 79.4 %



Level 3: 79.3 %

If we plot all values in the accuracy series, we can better compare and

observe all of the data from the different collections, Figure 22.

Figure 22. Plot of Accuracy metrics of level 3 of MapBiomas Collections 5.0, 6.0, 7.0, 8.0 and 9.0 in the Caatinga
biome (1985-2023).

Another technique to assess the quality of a time series of LULC maps is to

examine the area of each class across time as shown in Figure 23. This type of

analysis makes it possible to compare the areas of the classes throughout the time

series with other previously published collections. At this point, it is possible to

understand where and why there have been changes from one collection to another.



Figure 23. Time series of level 3 classes of MapBiomas Collection 9.0 in the Caatinga biome (1985-2023) per
area (ha). The green and brown lines represent respectively collections 7.1 and 8.0.

Another way of validating the coverage data was to compare the concordance

of the LULC classes between collections. For this analysis we used a rule

implemented by the Pampa team that accounts for coincidences (Figure 24).

Figure 24: Concordance table between collections 6.0, 7.1 and 8.0.



With this analysis we can infer how much area is being mapped with the same

class, how much area is varying between classes from one collection to another and

when these disagreements occurred last year. Regions in the north and center of the

Caatinga biome and the Chapada Diamantina, with coordinates [-12.8821188,

-41.6785173], show the greatest disagreements (Figure 25). These places of

greatest discordance indicate where new samples should be collected in order to

discriminate the correct class. They also indicate areas where the pixels in the

mosaic may have clouds, noise or shadows.

Figure 25: Pixel coincidence between collections 6.0, 7.1 and 8.0.

The concordance statistics over the time series show that on average 76 % of

the pixels are coincident between the 3 collections (Figure 26). This percentage is

higher than the accuracy of the last three collections, which indicates that this

measure does not indicate the quality of the maps, but rather areas with high stability

between collections.



Figure 26: Statistics of the areas of agreement for collections 6.0, 7.1 and 8.0.

Based on this analysis, the question arises as to which classes are affected

by large areas of disagreement. Thus, if we analyze the last two collections by cover,

then the models would indicate where the pixels are that were classified as

savannah in collection 7.1, for example, and are not in collection 8.0, as well as

those that are now in collection 8.0 and were not in collection 7.1 (Figures 27a and

27b).



Figure 27a: Concordance for Forest Formation, Savannah Formation and Grassland Formation

between collections 7.1 and 8.0. In gray concordat, in blue present only in collection 7.1, and in red present

only in collection 8.0.

Figure 27b: Concordance for Pasture, Mosaic of uses and Non vegetated areas between collections 7.1

and 8.0. In gray concordat, in blue present only in collection 7.1 , and in red present only in collection 8.0.

Land cover categories with a greater presence in the Caatinga biome, such as

Savannah Formation, presented more than 80% of agreement between the last two

collections (Figure 28).



Figure 28: Areas of concordant pixels between collections 7.1 and 8.0.

An analysis of coincidences can be made using maps from other sources. To

do this, we used the map from the Brazilian Institute of Geography and Statistics

(IBGE), available on the download page of the institute's platform. The comparison

was made to homogenize each of the land cover classes from the IBGE product with

the MapBiomas maps (Figure 29).

Figure 29: Unified legend between IBGE classes and Mabiomas classes.

Figure 30: Coincidence Map of Caatinga using the IBGE LULC and MapBiomas LULC for the year 2000.



The greatest coincidences are found in areas to the west and north of the

Caatinga biome, where there are large expanses of savannah, and in the south-east,

where there is a high presence of pasture (Figure 31).

In seven years of IBGE maps, the differences with the MapBiomas land cover

and land use maps was approximately 50% for all years (Figure 31).

Figure 31: Areas of concordant pixels between the IBGE and MapBiomas maps for the years 2000,

2010, 2015, 2020.
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