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1 Overview

This document describes the method applied to generate the annual maps of

deforestation and secondary vegetation regrowth produced using the annual maps of

land-use/land cover (LULC) provided by MapBiomas Collection 8. A time series of the

dynamics of natural vegetation cover was produced for all six Brazilian biomes spanning

1987-2021, by identifying patterns of classification trajectories at the pixel level regarding

loss/regrowth of natural vegetation.

2 Method

2.1 Input Dataset

The main goal of this method is to identify events of natural vegetation loss or the

regrowth of secondary vegetation after some period of land use, irrespective of the specific

vegetation/land-use classes involved. Therefore, the 29 classes in the original legend of the

MapBiomas dataset were aggregated into three generic classes: Anthropic, Natural, and Not

Included (Table 1). The time series (1985-2022) was used as input data for the trajectory

analysis algorithm described in the next section of this document.

Table 1 – Aggregation scheme applied to the MapBiomas Collection 2 annual LULC time

series to produce the input dataset for classification trajectory analysis.

Aggregated class Original classes included Raster Value

Anthropic Pasture, Agriculture (Soybean,Sugar cane, Rice, Cotton, Other Temporary Crops,

Coffee, Citrus, Palm Oil, Other Perennial Crops), Forest Plantation, Mosaic of Uses,

Urban Area, Mining

1

Natural Forest Formation, Floodable Forest, Savanna Formation, Mangrove, Wooded

Sandbank Vegetation, Wetland, Grassland, Hypersaline Tidal Flat, Rocky Outcrop,

Herbaceous Sandbank Vegetation, Other Non Forest Formations

2

Not Included Beach, Dune and Sand Spot, Other non Vegetated Areas, River, Lake and Ocean,

Aquaculture, Not Observed

7



2.2 Classification Trajectory Analysis

Per-pixel classification trajectory analysis was conducted within a moving temporal

window while applying persistence criteria to differentiate between noisy class transitions

(e.g., toggle caused by mixed pixels Xie et al., 2020) from transitions consistent with

deforestation events and secondary vegetation regrowth events. For a given annual map in

the input dataset (with three classes), the algorithm identifies pixels in which there was a

change to the previous year and then checks if the classification was persistent before and

after the transition. The period a pixel had to present constant classification before and after

a class change to be mapped as vegetation loss or regrowth was named persistence criteria.

Changes in the input map that agreed with the defined criteria were classified in the

respective loss/regrowth category. Changes that did not agree were reverted to reflect no

change to the map in the previous year. The resulting output has five classes (Primary

Vegetation, Secondary Vegetation, Loss of Primary Vegetation, Loss of Secondary Vegetation

and Regrowth), in addition to the original three classes in the input data. In the next iterative

step, which will produce the next year's map, the previous steps' output maps are used as a

reference for past classification trajectories.

For deforestation, the persistence criteria were defined within a temporal kernel of four

years: a pixel was mapped as a deforestation event in year t if it persisted as Natural for at

least two years before conversion to Anthropic (i.e., Natural in t-1 and t-2) and persisted as

Anthropic for at least one year after the conversion (i.e., Anthropic in t and t+1).

In contrast with deforestation, the regrowth of secondary vegetation is not a discrete

event promptly observable from differences in consecutive annual LULC maps. Rather, it is a

gradual process that spans several years, with its duration controlled by several ecological

factors: type and duration of the past land-use regime, abundance of propagules sources in

the (i.e., natural vegetation fragments) in the landscape, climate and topography, among

other variables that can vary widely at the biome scale (Aide et al., 2000; Ferreira et al.,

2015; Sobrinho et al., 2016; Uriarte et al., 2010). Therefore, we conducted trajectory analysis

considering three distinct persistence criteria (i.e. considering three different temporal

kernels) regarding the regrowth of secondary forest, followed by inspection of such versions

by specialists in vegetation dynamics in each of the biomes. The evaluation of each version

was based on the knowledge of how vegetation regrowth varies as a function of the distinct

climatic regimes, types of vegetation and past land-use regimes involved. The three sets of

persistence criteria to identify pixels of secondary vegetation in year t were:

(a) persistent classification as Anthropic for at least two years before the conversion (i.e.,

Anthropic in t-1 and t-2) and persistence as Natural for at least three years after the

transition (i.e., Natural in t, t+1 and t+2);

(b) persistent classification as Anthropic for at least two years before the conversion (i.e.,

Anthropic in t-1 and t-2) and persistence as Natural for at least five years after the transition

(i.e., Natural in the t to t+5 period);



(c) persistent classification as Anthropic for at least two years before the conversion (i.e.,

Anthropic in t-1 and t-2) and persistence as Natural for at least seven years after the

transition (i.e., Natural in the t to t+7 period).

Given that the criteria for persistence with respect to both deforestation and regrowth

involve a two-year period before conversion to verify consistent changes in class, the

commencement of the output time series is established as 1987. This choice is due to the

fact that the years 1985 and 1986 in the input dataset do not possess two years of prior

information, rendering them ineligible for inclusion in the analysis Similarly, 2021 is the last

year in the input dataset, and therefore, deforestation is mapped until 2020 in the output

maps, with 2021 serving only to check for consistent deforestation trajectories. For

secondary vegetation regrowth, the final year in the output time series varied according to

the respective persistence criteria version: 2019 for the version adopting three years of

persistence after the class change that is available on the platform.

Pixels showing class changes between Natural and Anthropic (or vice versa) but not

following the defined rules were reclassified to correctly represent land-cover/land-use in

the next step of the iterative algorithm (i.e., when analyzing the next year in the series). For

example: when analyzing the 1988 input LULC map, pixels originally classified as Natural in

1987, Anthropic in 1988 and then as Natural again in 1989 were not identified as

deforestation in the 1988 output map, because the trajectories do not comply with the

persistence criteria for deforestation. Rather, pixels with land-use change trajectories that

did not follow the persistence criteria were reclassified to match the classification in the

previous year, so that the information available for the next step of the trajectory analysis

(1989 in this example) indicates stability until there is a change that follows the persistence

criteria.

An overview of the processes through which information in the MapBiomas annual LULC

time series is used to map vegetation loss or regrowth is given in Figure 1. The seven classes

representing vegetation dynamics or stability -- that derive from the trajectory analysis of

the original input dataset with three classes – are explained in detail in the next session.



Figure 1 – Overview of the steps needed to map vegetation dynamics using a LULC annual
time series as input, following the presented method. The first step is aggregating 21 LULC
classes in the original datasets into three classes. In the second step, pixels in the resulting
aggregated annual time series have their trajectory analyzed to identify changes consistent
with the defined persistence criteria. For a pixel to be identified as Regrowth it has to be
classified as Natural in the current year of analysis (tile with dashed green border; T0), in (at
least) the following two years (green tiles; T+1 and T+2) and also be classified as Anthropic in
the two years immediately before the year of analysis (yellow tiles, T -1 and T -2, yellow tiles).
For a pixel to be identified as Deforestation (i.e. Loss of Primary Vegetation or Loss of
Secondary Vegetation) it has to be classified as Anthropic in the current year of analysis (tile
with dashed yellow border; T0), in the following years (yellow tile; T+1) and also be classified
as Natural (Primary vegetation or Secondary Vegetation) in the two years immediately before
the year of analysis (green tiles; T-1 and T-2). The process is carried on iteratively starting by
the 1987 map (1985 and 1986 input maps used to check persistence criteria) and the result is
an annual time series mapping seven classes, which can represent either a type of land cover
or a class change event: Primary Vegetation (cover), Secondary Vegetation (cover), Anthropic
(cover), Regrowth (change), Loss of Primary Vegetation (change) and Loss of Secondary
Vegetation (change). Post-processing of the annual time series that results from the
trajectory analysis involved of a two-step spatial filter that removes small (less than ten
30mx30m pixels), isolated patches of pixels.

2.3 Classification Scheme

The final annual maps produced through trajectory analysis contain seven classes, which

can represent either a type of land cover or a class change event: Primary Vegetation

(cover), Secondary Vegetation (cover), Anthropic (cover), Regrowth (change), Loss of Primary



Vegetation (change) and Loss of Secondary Vegetation (change). The definition of these

classes and the persistence rules related to each are shown in Table 2.

Table 2 – Description of the classes mapped in the annual vegetation dynamics time series

produced by the presented method.

2.4 Post-processing

A two-step spatial filter was applied to all versions of the resulting dataset. In the first

step, all pixels with vegetation regrowth throughout the time series (i.e., classified as

Regrowth at least once) were accumulated into a single layer. Patches (i.e., connected pixels

of the same class) containing less than ten pixels within this mask were removed. Such pixels

were reclassified according to the mode in the spatial vicinity (considering a three-by-three

square kernel). The second step was conducted year-wise instead of considering a temporal

accumulated map, using the result of the first step as input; it consisted of reclassifying

pixels of Primary Vegetation Loss, Secondary Vegetation Loss or Other that were contained

in small patches (less than ten pixels). For each year, removed pixels were reclassified

according to the mode in the spatial vicinity (three by three square kernel).



3 Concluding remarks

The method presented here conceptualizes categories of vegetation dynamics based on

per-pixel LULC classification trajectories, which demands some premises to be adopted. For

example, any natural vegetation mapped at the beginning of the input time series is

regarded as Primary Vegetation until its experiments change, even though some of those

areas of natural vegetation cover in Brazil had already been used before 1985. Additionally,

the mapping of Secondary Vegetation following the presented method is unable to inform

about the quality of the developing vegetation and, therefore, can represent contrasting

ecological processes, such as regeneration, restoration, or biological invasion (e.g.,

Damasceno et al., 2018; Fernandes et al., 2016; Pinheiro & Durigan, 2009).

Even though the quality of the produced maps is tightly linked to the accuracy of the

input dataset (MapBiomas), a validation protocol is being produced to allow per biome

quality assessment of the vegetation dynamics classification. The main goal is to reduce

uncertainties and eliminate bias when estimating area and accuracy metrics for vegetation

dynamic classes that are not prevalent in the territory.
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