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1. Overview
This document presents the method developed to map Urban Area (ID 24) and its

associated changes in the Collection 8 of MapBiomas. Following the general method of

MapBiomas, Urban Area mapping adopts a supervised machine learning classification

method applied to Landsat imagery, resulting in annual land cover and land use maps. Main

improvements regarding the Collection 8 were the inclusion of Landsat 9 Collection 2

scenes, the use of a smoothing process in the nightlights data in the spatial filter, the update

of the Index of Roads and Structures (IRS) (Justiniano et al. 2022) in the spatial filter and the

automatic threshold selection for the Random Forest (RF) probability results. A

neighborhood approach was adopted to cover areas with few samples, enlarging the

processed area.

The mentioned enhancements focused on refining imagery and updating data. By

integrating Landsat 9 images, we bolstered classification precision for the time series' final

year, resulting in an improved mosaicking process. Adjustments were made to the nighttime

layer to mitigate misclassification risks stemming from its spatial resolution. Furthermore, we

integrated IRS data from 2022 into our analysis. Notably, this data layer played a pivotal role

in the spatial filter processing alongside other criteria. These collective refinements yielded a

slight increase in identified urban areas compared to previous iterations of the MapBiomas

Collections.

Figure 1 summarizes the main methodological processing steps using Landsat

mosaics, Random Forest classification algorithm, and spatial and temporal filters.

Figure 1. Basic scheme of the production of Urban Area maps in MapBiomas Collection 8.
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Since Collection 6, we have adopted as class name the term “Urban/Urbanized Area”

(UA) instead of “Urban Infrastructure” in order to cope with the terminology applied in urban

studies, such as IBGE (2017). UA are regions with predominance of significant density of

buildings, roads and urban related infrastructure. It is worth pointing out that for any external

quantitative comparison, it is important that the concepts adopted should be made

compatible.

2. Landsat image mosaics

Landsat 5, Landsat 7, Landsat 8 and Landsat 9 imagery were used to create annual

mosaics for mapping Urban Area in Collection 8.0, according to Table 1.

Table 1. Landsat imagery used in Urban Area mosaics.

Landsat
Collection Sensor Collection Level Bands [wavelength]

Landsat 5
Level 2,
Collection 2,
Tier 1 1

TM 2 Surface
Reflectance

SR_B1: Blue [0.45-0.52 μm]
SR_B2: Green [0.52-0.60 μm]
SR_B3: Red [0.63-0.69 μm]
SR_B4: Near Infrared [0.77-0.90 μm]
SR_B5 : Shortwave Infrared 1 [1.55-1.75 μm]
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm]

Landsat 5 TM
Collection 1
Tier 1
Raw Scenes 2

TM 2 Raw
Images

B4: Near infrared [0.76 - 0.90 μm]
B5: Shortwave infrared 1 [1.55 - 1.75 μm]
B6: Thermal Infrared 1 (resampled from 60m

to 30m) [10.40 - 12.50 μm]

Landsat 7
Level 2,
Collection 2,
Tier 1 3

ETM+ 2 Surface
Reflectance

SR_B1: Blue [0.45-0.52 μm]
SR_B2: Green [0.52-0.60 μm]
SR_B3: Red [0.63-0.69 μm]
SR_B4: Near Infrared [0.77-0.90 μm]
SR_B5 : Shortwave Infrared 1 [1.55-1.75 μm]
SR_B7: Shortwave Infrared 2 [2.08-2.35 μm]

Landsat 7
Collection 2
Tier 1
Raw Scenes 4

ETM+ 2 Raw
Images

B4: Near Infrared [0.77 - 0.90 μm]
B5: Shortwave Infrared 1 [1.55 - 1.75 μm]
B6_VCID_1: Low-gain Thermal Infrared 1

(resampled from 60m to 30m)
[10.40 - 12.50 μm]

Landsat 8 and
9 Level 2,
Collection 2,
Tier 1 5

OLI /
TIRS 2 Surface

Reflectance

SR_B2: Blue [0.45 - 0.51 μm]
SR_B3: Green [0.53 - 0.59 μm]
SR_B4: Red [0.64 - 0.67 μm]
SR_B5: Near Infrared [0.85 - 0.88 μm]
SR_B6: Shortwave Infrared 1 [1.57 - 1.65 μm]
SR_B7: Shortwave Infrared 2 [2.11 - 2.29 μm]

Landsat 8 and
9 Collection 2
Tier 1 Raw
Scenes 6

OLI /
TIRS 2 Raw

Images

B5: Near infrared [0.85 - 0.88 μm]
B6: Shortwave infrared 1 [1.57 - 1.65 μm]
B10: Thermal infrared 1 (resampled from 100m

to 30m) [10.60 - 11.19 μm]
1 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1
2 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2
3 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2
4 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1
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5 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 and
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
6 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1 and
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1

Mosaics were created following these steps:

1. Filtering Landsat Collections scenes by date (year-by-year, from 1985 to 2022) and

bounds (Brazilian territory).

2. Masking pixels of clouds and cloud shadows in all scenes, using pixel quality attributes

generated by the CFMASK1 algorithm. For scenes of Landsat Collection 2 (surface

reflectance of Landsat 5, 7, 8 and 9 and raw scenes of Landsat 5, 7, 8 and 9), pixel

quality is in QA_PIXEL band.

3. Scaling surface reflectance values to 0 to 1, using values of scale (-0,2) and offset

(0.0000275) informed in collections’ bands description in each reference page.

4. Calculating selected spectral indexes and fractions from spectral mixture analysis for

each scene (Table 2).

5. Applying an appropriate reducer to each band/index to obtain one pixel value per year

(Table 2).

6. Calculating reduced indexes difference to capture intra-annual changes (Table 2).

7. Compositing all bands and indexes to obtain one mosaic per year.

Table 2. List, description, reducer, and script acronym used in Urban Area mosaic.

Band / Index /
Fraction Description Reducer Script acronym

BLUE Landsat band median BLUE_median

GREEN Landsat band median GREEN_median

RED Landsat band median RED_median

NIR Landsat band median NIR_median

SWIR1 Landsat band median SWIR1_median

SWIR2 Landsat band median SWIR2_median

NDVI Normalized Difference Vegetation Index median NDVI_median

EVI1 Enhanced Vegetation Index 1 median EVI_median

EVI1 Enhanced Vegetation Index percentiles 10th percentile,
90th percentile

EVI_p10
EVI_p90

EVI1 Enhanced Vegetation Index percentiles
difference difference EVI_dif9010

1 CFMask is a multi-pass algorithm that uses decision trees to prospectively label pixels in the scene;
it then validates or discards those labels according to scene-wide statistics. It also creates a cloud
shadow mask by iteratively estimating cloud heights and projecting them onto the ground. Reference:
https://www.usgs.gov/core-science-systems/nli/landsat/cfmask-algorithm.
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Band / Index /
Fraction Description Reducer Script acronym

EVI2 Enhanced Vegetation Index 2 median EVI_median

EVI2 Enhanced Vegetation Index percentiles 10th percentile,
90th percentile

EVI2_p10
EVI2_p90

EVI2 Enhanced Vegetation Index percentiles
difference difference EVI2_dif9010

MNDWI Modified Normalized Difference Water
Index median MNDWI_median

NDWI Normalized Difference Water Index median NDWI_median

NDBI Normalized Difference Built-Up Index median NDBI_median

NBR Normalized Burn Ratio median NBR_median

NDRI Normalized Difference Road Index median NDRI_median

BAI Bare Soil Area Index median BAI_median

UI Urban Index median UI_median

NDUI Normalized Difference Urban Index median NDUI_median

BSI Bare-Soil Index median BSI_median

BU Built-up Index median BU_median

GV Green Vegetation Fraction median GV_median

NPV Non Photosynthetic Vegetation Fraction median NPV_median

SOIL Soil Fraction median SOIL_median

CLOUD Cloud Fraction median CLOUD_median

SHADE Shade Fraction median SHADE_median

GVS Green Vegetation + Soil Fraction median GVS_median

NDFI Normalized Difference Fraction Index median NDFI_median

SUBS Substrate Fraction median SUBS_median

VEG Vegetation Fraction median VEG_median

DARK Dark Fraction median DARK_median

EBBI Enhanced Built-Up and Bareness Index median EBBI_median

EBBI Enhanced Built-Up and Bareness Index
percentiles

25th percentile,
90th percentile

EBBI_p25
EBBI_p90

EBBI Enhanced Built-Up and Bareness Index
percentiles difference difference EBBI_dif7525

EBBI Positive part of the Enhanced Built-Up
and Bareness Index median EBBIsNeg_median

EBBI Positive part of the Enhanced Built-Up
and Bareness Index percentiles

25th percentile,
90th percentile

EBBIsNeg_p25
EBBIsNeg_p75

EBBI
Positive part of the Enhanced Built-Up

and Bareness Index percentiles
difference

difference EBBIsNeg_dif7525
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3. Classification

3.1. Classification algorithm
The Random Forest algorithm implemented in Google Earth Engine

(smileRandomForest) was applied to map Urban Area in MapBiomas Collection 8 using

training datasets of points in urban areas and points in non-urban areas.

To reduce computational cost, the automatic classification was performed only in

“search areas”, defined by polygons where urban areas were likely to be found. A uniform

hexagonal polygon grid was created over Brazilian territory and intersected with urban

census tracts (IBGE, 2021)2, totalizing a search area of 226.005.594 ha, covering 27% of the

Brazilian territory.

Materials used in urban areas (like in roofs, pavements, and others) in Brazil usually

are spatially and temporally highly diverse. In time, diversity is related to the urbanization

process itself: streets in Humaitá, Amazonas State, for instance, were more sparse and

predominantly unpaved in 1985, whereas today they are paved in a denser urban

environment. Furthermore, roofs and pavements have distinct spectral behavior depending

on their materials, colors, aging and coating (such as algae, lichen, dirt, dust, rubber tire

marks, etc.) (HEROLD et al., 2004).

To cope with the diversity of urban cover types, different random forest classifiers

were built. We divided Brazil territory into 558 tiles that correspond to charts with a scale of

1:250.000, derived from the International Map of the World (IMW). Tiles with no hexagon

search area were discarded, resulting in 522 valid tiles. Then, a specific classifier was

trained to each of these tiles of each year of the 38 years of the Collection 8.0.

Random Forest parameters were set to 500 trees and 20 minimum leaf populations.

The classification result is an image assigning to each pixel the probability of being urban.

3.2. Training Samples

Training samples were obtained from OpenStreetMap database (OpenStreetMap,

2018) combined with nightlight images (NOAA), land cover and land use maps from the

Third National Inventory (MCTI, 2015) and built-up maps of the Global Human Settlement

Layer (GHSL), provided by Joint Research Center (JRC) (Corbane et al., 2019).

2 Census tracts are classified according to their situation. To build the search areas, we
considered tracts in the following situations: (1) urban area with high density of buildings, (2) urban
area with low density of buildings and (3) urban nucleus.
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Firstly, a preliminary urban mask was built based on pathways from OpenStreetMap

database, representing all roads, streets, sidewalks, and unknown roads already registered

by OpenStreetMap users. Pathways within the urban patches or conglomerates of specific

categories (residential, service, path, and living street) were selected. Then, pathways

outside urban area were removed using a nightlight image (Figure 2). For specific years,

pathways were also filtered by existing data: built-up surfaces maps of the Global Human

Settlement Layer (GHSL) for 1985, and urban area mappings of the Third National Inventory

(MCTI, 2015), for 1994, 2002, and 2010. Then these filtered pathways were transformed into

areas applying a buffer of approximately 100 meters to each one of them.

Figure 2. Example of filters used on the vector layer of OpenstreetMap in Rio de Janeiro - RJ
Brazil.

Secondly, an explorative classification of urban area using indexes of normalized

difference of vegetation and water (NDVI and NDWI) was produced to mask water and

vegetation (Figure 3).

The final urban mask was obtained by the intersection of the preliminary mask,

derived from OpenStreetMaps polylines and filtered by ancillary data, with the explorative
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classification (Figures 4 and 5). And the symmetrical difference of the final urban mask is the

final non-urban mask.

Random points were generated within the search area of each of the 522 tiles. Then

PostGIS was used to label points using the final urban and non-urban masks (Figure 6),

generating a dataset of urban and non-urban samples for the years of 1985, 1994, 2002,

2010 and 2018 (these dates coincide with urban mapping reference data available).

Figure 3. Explorative classification results for Rio de Janeiro - RJ, Brazil.

Figure 4. Final urban mask for Rio de Janeiro- RJ, Brazil.
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Figure 5. Final non-urban mask (orange color) for Rio de Janeiro - RJ, Brazil.

Figure 6. Random points divided by urban area (red) and non-urban area (blue).

To balance the sample dataset, points were generated in each of the 522 tiles

observing the extension of urban area and non-urban area, according to the final urban

mask. Considering the entire Brazil, In the early years of the time series, this balance was 1

sample of urban area to 2.6 samples of non-urban area. In the final years, it was 1 to 2.
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3.3. Feature space

The feature space that characterizes Urban Area for MapBiomas Collection 8.0 is the

dataset of urban and non-urban points trained with 43 variables from Landsat image

mosaics (summarized in Table 1, Section 2), calculated for each tile.

Datasets comprising both urban and non-urban samples were employed, based on

the assumption that once a point was classified as urban, it retained this designation in the

subsequent years. Accordingly, images spanning from 1985 to 1993 were utilized to

construct the 1985 dataset, thereby yielding a distinct feature space for each year and tile.

Similarly, images spanning from 1994 to 2002 were utilized for the 1994 dataset; images

from 2003 to 2009 for the 2003 dataset; images from 2010 to 2017 for the 2010 dataset; and

images from 2018 to 2021 for the 2018 dataset. These intervals were arbitrarily defined in

order to take into account the differences in Landsat mosaics and cover the whole dataset. It

constitutes one of the limitations of the classification process.

A neighborhood approach was adopted in tiles without feature space due to the lack

of urban samples or lack of cloud-free data. In these cases, the nearest tile with a feature

space was used, resulting in 421 tiles with feature spaces for each year (Figure 7).

Figure 7. Feature space’s tiles.
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4. Spatial and Temporal Filters

The spatial and temporal filters were configured to improve the classification

considering the diversity of materials and features of the urbanized areas of several Brazilian

municipalities, from 1985 to 2022. These procedures resulted in a binary raster which

indicated urban and non-urban areas.

4.1 Spatial Filter

From one perspective, the classifier exhibits a tendency to assign elevated UA

(Urban Area) probability values to regions beyond urban confines, encompassing mining,

sand deposits, rural structures, and various other features. Conversely, the classifier assigns

diminished probability values to pixels within the urban framework that contain trees and

public squares. Adding to the complexity, adopting uniform probability thresholds for pixel

assignment to UA zones would inevitably result in inaccuracies, given the unique traits of

different cities. To counter this, the thresholds for defining UA regions were established

within the spatial filter code, where they harmonize with supplementary data and contextual

factors.. This was done considering the layers presented in Table 3.

Table 3. Layers and thresholds for the spatial filter.
Layer Description Threshold criteria Why use?

IRS Defines urban limits according to
roads and infrastructure density.
Quantitative layer.

Values greater than or equal
to 500 (JUSTINIANO et al.,
2022).

Provides a general
mask layer
identifying where
urban area must
be.VIIRS Defines general regions where

urban areas can be found
according to night light values.
Quantitative layer.

Greater than or equal 1.

Census tracts Defines urban limits according to
census criteria and official
organism. Qualitative layer.

Tracts with urban
characterization (types 1, 2
and 3) (IBGE, 2020).

Subnormal
settlements

Defines regions where there are
human populations with specific
vulnerabilities around urban area.
Qualitative layer.

All the regions were
considered.

UA
(probability)

Defines urban area according to
the RF algorithm through time
series. Quantitative layer.

Defined using 'best
threshold algorithm'.

Provides the urban
classification

Additionally, as part of the enhancements introduced in Collection 8, adjustments

were made to the nightlight layer (VIIRS) in order to prevent misclassification of UA. This

was achieved through the reprojection of the original image resolution, coupled with a pixel

neighborhood erosion, as depicted in the figure 8.
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Figure 8. VIIRS smoothed image.

Considering that UA has higher population and light emission at night, raster files of

the satellite Visible Infrared Imaging Radiometer Suite (VIIRS), on board the Suomi NNP

satellite Day Night Band were used. The threshold value of the VIIRS bands and the annual

values of UA probability were established through an algorithm that calculates the best

threshold for each grid per year of the time series (see urban area GitHub3).

The result of applying filters based on threshold values per year is a raster with

values zero and one, where the latter value is associated with the urban area. In this raster,

it was possible to observe the occurrence of isolated pixels or small clusters of pixels with

different values than those in the surrounding area. In the urban area, small clusters of

isolated pixels with a value of zero would be associated with squares, boulevards, water,

trees, and other urban elements. In the non-urban area, isolated pixels with one value may

be related to agricultural structures, summer homes, and other non-urban structures.

Spatial filters also perform morphological operations that eliminate groups of up to 60

pixels with zero values in UA and assign them a one value. Conversely, in non-urbanized

areas, groups with less than 5 pixels with a value of one are eliminated, giving zero value.

3 https://github.com/mapbiomas-brazil/urban-infrastructure/tree/mapbiomas80
12
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4.2 Temporal filter

Temporal filters (TF) were applied as rules to check classification consistency over

time, observing the conceptual aspects delimited to the mapped category. For this purpose,

the sequence of filters indicated and described in Table 4 was developed. General rules for

middle years (GR), and specific rules for the first years (FYR) and last years (LYR) were

determined for each TF. The temporal consistency was established according to results

obtained by pixel in a ranging between 3 and 5 years (kernel) for the immediately previous

TF results.
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Table 4. Descriptions of TFs used.

TF Scope Type Years
Kernel

Conditionals
i-2 i-1 i i+1 i+2 i+3

1 It acts on the pixels
that were classified as
‘UA’ in the SF results
and sets the mask for
the filters up to TF3.

FYR 1985 and 1986 x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the kernel, then the ‘UA’ is assigned to the TF2.

GR 1987 to 2019 x x x x x If the pixel under analysis is classified as ‘UA’ within three or more
years of the interval, then the ‘UA’ is assigned to the TF2.

LYR 2021 to 2022 x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the interval, then the ‘UA’ is assigned to the TF2.

2 It acts on pixels that
have been validated
as ‘UA’ in the TF1

results.

GR 1985 to 2018 x x x x If the pixel under analysis is classified as ‘UA’ within two or more
years of the range, then the ‘UA’ is assigned to the TF3.

LYR 2018 and 2020 x x x x If the pixel is classified as ‘UA’ within two or more years of the
range, then the ‘UA’ is assigned to the TF3.

LYR 2022 x x x If the pixel is classified as ‘UA’ within two or more years of the
range, then the ‘UA’ is assigned to the TF3.

3 Extends the filter
mask and acts on

pixels not classified
as urban in TF2.

FYR 1985 x The results obtained for TF2 are assumed.

GR 1986 to 2020 x x x If the pixel is classified as ‘UA’ for i-1 and i+1, then ‘UA’ is assigned.

LYR 2022 x x If the pixel is rated 'UA' for i-1, then 'UA' is assigned.

4 Area Consolidation
Filter.

FYR 1985 x x If a pixel under analysis is rated 'UA' for i and not rated for i+1, then
it becomes non-urban.

FYR 1986 x The results obtained for TF3 are assumed.

GR 1986 to 2022 x x If a pixel under analysis is classified as 'UA' for i, then for i+1 it will
also be UA.

FYR = firsts years rules; GR = general rule; LYR = lasts years rules.
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5. Comparison between Collections
This section presents visual examples that offer a comparative view between the

current Collection and its predecessors. As shown in Figure 9, the criteria embraced in this

collection exhibit a greater inclusivity (excluding the Collection 6 results) in classification

across temporal dimensions. This evolution has fostered a more consistent and harmonized

process, aligned with the underlying conceptual framework. However, this refinement has led

to an increase in omission errors, a topic further presented upon in the subsequent section.

Figure 9. Comparison between growth of urbanized areas for Collections.

As an example, the Salvador municipality presents significant challenges with regard

to remote sensing mapping, mainly due to the frequent presence of cloud cover. The rugged

topography and high atmospheric humidity contribute to the formation of clouds that often

obscure the view of land surfaces captured by satellites. Figure 10 shows the evolution of

the mapping of these areas over the last three collections, where it is possible to notice the

reduction of commission errors, especially when compared to Collection 6

15



Figure 10. Example of visual comparison considering Salvador (BA).
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6. Validation strategies

6.1 Performance

The validation analysis was performed using point samples collected by the

Laboratory of Image Processing and Geoprocessing (LAPIG), University of Goiás-GO,

Brazil. According to the reference data, (i) the samples of UA that were correctly classified

are the True Positive; (ii) the samples of UA that were classified as not UA are the False

Negative; and the samples of UA that were not classified as UA are the False Positive.

The comparison of accuracy results between Collection 6.0, Collection 7.0 and

Collection 8.0 are shown in Figure 11 and Figure 12. The first shows that commission errors

in the last collections were smaller than in the previous. The omission errors, however, were

larger and more concentrated in the first 15 years of the time series.

Figure 11. Omission (Producer’s accuracy).
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Figure 12. Commission (User’s accuracy).

6.2 Reference Maps

MapBiomas Collection 8.0 were compared to two urban area maps: (1) the World

Settlement Footprint (WSF) produced by Deutsches Zentrum für Luftund Raumfahrt (DLR)

(MARCONCINI et al., 2020) and (2) Brazil Urbanized Areas produced by IBGE, Instituto

Brasileiro de Geografia e Estatística (IBGE, 2022).

WSF is a 10m resolution binary mask outlining the extent of human settlements

globally derived by means of 2014-2015 multitemporal Landsat-8 and Sentinel-1 imagery,

using different classification schemes based on Support Vector Machines. It is available at

Earth Engine Data Catalog4.

Brazil Urbanized Areas is a visual interpretation of urban features, identified

according to the elements of specific shape (geometry of objects) and pattern (spatial

arrangement). It is based on Sentinel 2 imagery, with spatial resolution of 10m. It is available

in shapefile format at IBGE’s website5.

Quantitative analysis (Table 5) shows that MapBiomas Collection 8.0 is compatible

with WSF, for 2015, despite the different spatial resolution of the two maps (30m and 10m,

respectively). The comparison with IBGE’s 2019 data points to an underestimation of

MapBiomas Collection 8.0 urban area. The underestimation is reported in MapBiomas

accuracy assessment. Worth to note that the interpretation method and higher resolution of

IBGE’s data improve the mapping of low-density areas, which are not completely mapped by

MapBiomas.

5

https://www.ibge.gov.br/geociencias/cartas-e-mapas/redes-geograficas/15789-areas-urbanizadas.htm
l?=&t=acesso-ao-produto

4 https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1
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Table 5. Quantitative analysis with reference data.
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