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1 Overview of the classification method

The MapBiomas project produces, among other land use and land cover classes, annual

irrigation agriculture maps in Brazil from 1985 to the present. The first irrigation agriculture

map from MapBiomas was released on Collection 5, comprising from 2000 to 2019, with

maps of center pivot irrigation, covering all Brazil, and other irrigation systems, covering only

the semiarid region. In Collection 6, the irrigated rice class was added, and the other classes

were extended to the 1985-2020 period. In Collection 7.1, in addition with the classes from

the previous Collections, was added a new type of information about irrigation, the pivot

dynamic. Pivot dynamics consists in presenting individualized characteristics of each pivot,

such as number of cycles per year, dates of start and end cycles, and average daily

precipitation. In Collection 8, the information about center pivot, other irrigation systems

and pivot dynamics was reviewed, the year 2022 was added, and the spatial extent for the

Pivot Dynamics was increased. Figure 1 presents the evolution of irrigation agriculture

classes within the MapBiomas project.

Clique aqui para inserir texto.

Figure 1: Comparison between the ‘Irrigation Agriculture’ classes of MapBiomas Collection 5,

6, 7.1 and 8.

2 Center pivot irrigation systems

The first attempts in the MapBiomas project for mapping center pivot irrigation systems

came through the Next Generation Mapping (NexGenMap) project. The objective of this

initiative was to develop machine learning algorithms, tools and methods for producing the

most current, detailed and accurate maps of land use and land cover using daily PlanetScope



imagery, cloud computing, and new artificial intelligence algorithms. In the NextGenMap

project, artificial intelligence algorithms were developed to map center pivot irrigation

systems using PlanetScope imagery in the Cerrado biome (SARAIVA et al., 2020).

In MapBiomas context, the mapping of ‘Center pivot irrigation systems’ was performed using

Landsat imagery and an adapted U-Net architecture (RONNEBERGER et al., 2015), an image

segmentation convolutional neural network architecture. The adapted U-Net architecture

was trained with two different sets of samples, one set with center pivot irrigation systems

samples and other with irrigated rice samples. To increase the temporal and spatial

consistency of the final maps, the raw result was post-processed using temporal and spatial

filters (Figure 2).

Figure 2: steps of the mapping process of two center pivot irrigation systems.

2.1 Image selection

The mapping of the center pivot irrigation systems used annual mosaics generated from

available images in each year. However, in this Collection, as was only added the 2022 year in

the temporal series from the last Collection, the images from the period of 1985 to 2021

were Landsat Collection 1 Tier 1 TOA, and for 2022 were Landsat Collection 2 Tier 1 TOA. In

addition, only images with less than 80% cloud cover and shadows were considered.

2.2 Definition of regions for classification

The reference maps used for categorizing center pivot irrigation systems were generated

through a collaboration between the Brazilian National Water Agency (ANA) and Embrapa

Milho e Sorgo, corresponding to the years 1985, 1990, 2000, 2005, 2010, 2014, and 2017



(ANA, 2019a). These mappings were produced based on visual interpretation of imagery

acquired from Landsat 5, Landsat 8, and Sentinel 2A/2B satellites, alongside high-resolution

images (<1 meter) sourced from Google Earth.

For the delimitation of the study area, the Brazilian territory was divided into blocks of 0.5' x

0.5' degrees (~300 thousand ha each). Only blocks with occurrence of center pivot irrigation

systems in any of the reference map years were selected. Figure 3 shows the 723 chosen

blocks distributed across an area of approximately 212 million hectares to map center pivot

irrigation systems in Brazil.

Figure 3. Study area for the mapping of center pivot irrigation systems in Brazil.

2.3 Classification

2.3.1 Classification scheme

The classification scheme of the center pivot irrigation considered only two possible classes

for each pixel, center pivot irrigation, and non-center pivot irrigation.

2.3.2 Feature space

The feature space created for the center pivot irrigation systems mapping aimed to obtain

the characteristics of the pivot at the time they were cultivated, as well as to highlight the

differences in relation to the other targets, such as other agriculture areas, pasture, forest

formation, etc. Therefore, three metrics were selected that showed the best results to

distinguish the pivots in relation to the other targets:

- NDVI_p75, 75th percentile of NDVI values for all images.



- NDVI_p100, 100th percentile, or maximum value, of the NDVI values of all images.

- NDVI_stdDev, the standard deviation of the NDVI values for all images.

The mosaic generated is composed by the selected metrics. Each metric corresponds to a

band in the image, as shown in Figure 4.

Figure 4. RGB visualization (NDVI p75, NDVI Maximum, NDVI stdDev) of an image used for

training and mapping of the center pivot irrigation systems, generated for the year 2017.

The use of images with only three bands improved the process of training and classifying the

pivots since the reduced number of bands, consequently reduced the computational

infrastructure necessary for the processing of this data.

2.3.3 Classification algorithm, training samples and parameters

Due to the extensive study area (~212 Mha) and computational limitations, the model was

trained using only a subset of blocks chosen from the population of 723 blocks.

The choice of sample data is an important step for training Deep Learning models, since the

samples must represent all the spatial and spectral variability of the population. For this,

stratified sampling was performed based on the pivot area obtained from the reference

maps. The sampling considered three strata: with low, medium and high coverage of center

pivot irrigation systems. The stratum containing blocks with low coverage was created from

the blocks whose pivot area was less than or equal to the median area of ​​all blocks, that is,
50% of the blocks (361 blocks). The stratum with the high coverage was created from blocks

whose sum of the area of ​​its pivots covers about 50% of the pivot area of ​​the entire

population (total of 41 blocks). Finally, the remaining blocks (321 blocks) were used to create

the layer with blocks containing a medium cover of center pivot irrigation systems. After

creating the stratum, 20 blocks were randomly chosen for training and 10 blocks for testing



in each of the three stratums. The training blocks were used to calibrate the model, while

the test blocks were used later for the accuracy analysis of the model. Figure 5 illustrates the

spatial distribution of the stratum and blocks chosen for training and testing the population

model.

Figure 5. Spatial distribution of high, medium and low center pivot irrigation cover stratum

and location of the blocks used for training and testing the model in Brazil.

As mentioned earlier, an adaptation of the U-Net convolutional neural network architecture

was performed to map the center pivot irrigation systems. Figure 6 illustrates the modified

U-Net architecture created.



Figure 6. Adapted U-Net architecture, with its layers and connections, used for the mapping

of center pivot irrigation systems.

This architecture was developed in Python, using the TensorFlow 2.0 library. The entire

training and mapping process was carried out using the Google Colab platform using Google

Drive to access the annual mosaics (generated in Google Earth Engine). Table 1 presents

some hyperparameters used during model training.

Table 1. Hyperparameters for training the modified U-Net architecture.

Hyperparameter Value

Chip size 256 x 256 pixels

Batch size 20

Epochs 100

Learning rate 0.001

The 2017 reference map was used for model training. In the training blocks, chips with 256 x

256 pixels were generated, 75% were allocated to the training data set and 25% for the

validation data set. Figure 7 illustrates the process of subdividing training blocks into smaller

chips to be used as input for model training.



Figure 7. Examples of the training and validation chips allocated within the training block of

the model.

The training set was used to learn the model and the validation set was used to perform

initial validations during model learning.

After the network training process was completed, the classifier was applied throughout the

Brazilian territory. In this step, 1024 x 1024-pixel chips were used. Increasing the size of the

chips at the time of sorting not only decreases problems generated by the edges of the chips

but also increases the memory capacity required for processing. Therefore, it was necessary

to decrease the batch size to 1.

2.4 Post-Classification

2.4.1 Temporal filter

The temporal filter employed for center pivot irrigation systems maps consisted of a

five-year moving window. Within this window, the targeted pixel was modified according to

two guiding rules:

1. The pixel is changed to center pivot if at least one of the two previous years and at

least one of the two subsequent years, that pixel was mapped as a pivot, indicating a

possible model omission error.

2. Pixels that were mapped as pivots only in the assessed pixel of the five-year window,

indicating a possible inclusion error, have been removed from the classification.

2.4.2 Spatial filter

In the center pivot irrigation systems mapping a spatial filter based on the erosion operation

was used followed by an expansion operation using a circular kernel with a radius of 60



meters. This spatial filter helped to eliminate noise generated by the mapping, as well as

smoothing the edges of the center pivot irrigation (Figure 8).

Figure 8 Example of correction of the spatial filter (on the right) in a classification that

presents noise on the edges (on the left).

2.5 Validation strategies

The preliminary validation of the center pivot irrigation model used the test blocks of the

2017 mapping (see Figure 5), as these blocks were not used for the model training. From the

reference map, the user's and producer's accuracy was calculated for each of the individual

stratum and considering all strata at the same time. Table 2 presents the results of the

preliminary model validation.

Table 2. Preliminary validation of the center pivot irrigation mapping for the year 2017, using

the test blocks selected in each stratum.

Stratum Producer’s Accuracy User’s Accuracy

Low coverage 40.87% 71.39%

Medium coverage 86.37% 91.62%

High coverage 84.16% 96.19%

All strata 83.97% 95.38%

The preliminary accuracy analysis showed that, in 2017, the model performed better in

regions with higher center pivot coverage. Considering all strata in 2017, the model

presented an omission error of 16% and an inclusion error of 5%.



2.6 Results

Comparing the area mapping results between MapBiomas Collection 8 and the

ANA/EMBRAPA dataset reveals that until 2010, the area mapped by MapBiomas closely

aligns with the values reported in the ANA/Embrapa dataset. However, in the subsequent

years, emerges a more substantial discrepancy, with MapBiomas Collection 8 showing a

tendency to underestimate the actual area.

Over the temporal series, the ANA/Embrapa dataset indicates an initial area of

approximately 0.03 Mha in 1985. This area steadily increases, reaching its peak of 1.48 Mha

in 2017. In comparison, MapBiomas Collection 8 starts at about 0.07 Mha in 1985, and its

growth remains consistent, culminating at around 1.65 Mha in 2022 (Figure 9).

In addition, is important to point out, that these divergences between the MapBiomas and

ANA/EMBRAPA, especially in the last years, underscores the significance of comprehending

their distinct methodologies and sources, mainly due to the omission of the smalls pivots

from MapBiomas.



Figure 9: Results of automatic mapping of center pivot irrigation systems in Brazil based on

Landsat images for the period from 1985 to 2022 compared to surveys carried out by the

ANA/Embrapa (ANA, 2019a).



3 Irrigated rice

The methodology for mapping of ‘Irrigated rice’ is also based on Landsat imagery and an

adapted U-Net architecture, a segmentation convolutional neural network architecture

(RONNEBERGER et al., 2015). The adapted U-Net architecture is trained with irrigated rice

samples obtained by reference maps from National Water Agency (ANA, 2021b) and the

National Supply Company (Conab, 2020). To increase the temporal and spatial consistency of

the final maps, the raw result is also post-processed using temporal and spatial filters. Figure

10 presents a flowchart of the methodology for irrigated rice classification.

Figure 10. Classification process for mapping center pivot irrigation systems and irrigation

rice in MapBiomas Collection 7.



3.1 Image selection

Due to variations in agricultural practices, cropping systems, soil management, and

vegetation patterns, compounded by computational limitations that restrict the utilization of

diverse images and their associated attributes, distinct models were developed using specific

mosaics built to each geographical region. This approach aimed to enhance the visibility of

rice plots within these mosaics, thereby facilitating the training of the models. Consequently,

three distinct mosaic types were generated to train separate models, with each model

designed for a specific Brazilian state.

To construct these mosaics, we initially sourced TOA images from collections of TM sensors

(spanning from January 2000 to October 2011), ETM+ (ranging from January 2000 to May

2003 and October 2011 to March 2013), and OLI (covering March 2013 to December 2019).

Subsequently, images capturing both the growing and off-seasons of irrigated rice were

selected, the choice of which depended on the region being considered.

A critical subsequent step involved the meticulous removal of cloud cover and cloud

shadows from the images. This process was achieved by leveraging the data encapsulated

within the Landsat quality band metadata (QA band). The images chosen for inclusion were

contingent on aligning with the growing and off-season periods as delineated by the annual

mapping schedule of each state, as detailed in Table 3.

Table 3. Periods used for the selection of images that were used to compose the mosaics

used for the mapping of irrigated rice in Collection 8.

State
Start season End season Start off-season End off-season

Tocantins - TO 04/01/year 07/30/year 08/01/year-1 11/01/year-1

Rio Grande do Sul

- RS
10/01/year-1 04/01/year 01/10/year-1 01/01/year

Santa Catarina -

SC

Paraná - PR

10/01/year-1 04/30/year 01/01/year 07/30/year



3.2 Definition of regions for classification

The delimitation of the mapping area was based on the map of irrigated rice in Brazil

published by the National Water Agency (ANA, 2021b) and the National Supply Company

(Conab, 2020). The selection of images was made based on the season period according to

the year of mapping carried out in each state. The reference map was divided into blocks of

0.5 x 0.5 degrees (~300 thousand ha each). The blocks used for irrigated rice mapping and

training were those that overlapped the reference map and with the states of interest, as

illustrated in Figure 11.

Figure 11. Study area used for the mapping of irrigated rice in the MapBiomas Project.

3.3 Classification

3.3.1 Classification scheme

Each of the three Brazilian states chosen was mapped by a model specifically trained for that

region. The classification considered two classes (binary classification), 1 for ‘Irrigated rice’

and 0 for ‘non-Irrigated rice’.

3.3.2 Feature Space

The feature space for mapping irrigated rice using the adapted U-Net architecture was

designed to accentuate the most significant distinctions between Irrigated rice crops and

other land uses, such as other types of agricultural crops. The choice of variables within this

feature space was contingent upon the specific Brazilian state undergoing mapping, as

presented in Table 4.



Table 4: Bands, indexes, and metrics used to compose the Landsat mosaics to classify

Irrigated rice.

State Tocantins Santa Catarina Paraná Rio Grande do Sul

Bands SWIR1, SWIR2 SWIR2 SWIR1, SWIR2
SWIR1, SWIR2,

TIR1

Indexes EVI2, NDWI EVI2, NDWI EVI2, NDWI EVI2

Metrics
CEI (EVI2), CEI

(NDWI)

CEI (EVI2), CEI

(NDWI)
CEI (EVI2) CEI (EVI2)

Period
Bands - off season

CEI - Annual

Bands - off season

CEI - Annual

Bands - off season

CEI - Annual

Bands - season

CEI - Annual

Figure 12 illustrates the different image mosaics that were used to map irrigated rice in the

different Brazilian states evaluated.



Figure 12. RGB visualization of the mosaics used for the mapping of irrigated rice in the

states of Rio Grande do Sul (A), Tocantins (B) and Santa Catarina (C).

3.4 Classification algorithm, training samples and parameters

To obtain the training, validation and test sets, each of the training blocks was first traversed

with a moving window, generating chips with 256 x 256 pixels. Then, for each block, the

generated chips were divided into 70, 20 and 10% for training, validation and test sets,

respectively. The training and validation datasets were used in the model adjustment and

pre-validation processing during model training, while the test dataset was used only for

final validation of the already trained model.

After the separate data sets, the pixel values of each feature were normalized. The

normalization rescaled the numerical values of the features to the range 0 to 1, making each

feature contribute similarly to the calculation of model loss. In Figure 13, an example of the

mosaic and its respective reference map is shown.

Figure 13. Example of an image mosaic used to train one of the models and its respective

ground truth containing classes 1 (Irrigated rice) and 0 (non-Irrigated rice).

3.5 Post-Classification

In the post-processing step of irrigated rice mapping, an exclusion noise filter was not used,

since the U-Net algorithm demonstrates reduced vulnerability to isolated noise instances

compared to pixel-by-pixel algorithms like Random Forest. Additionally, temporal filters were

also not applied to the irrigated rice mapping, due the consideration of the distinctive

planting dynamics of rice, particularly within the Pampa biome, which constitutes the largest

rice-producing region in Brazil. In this biome, rice cultivation areas are intertwined with

rotational practices involving cattle and fallow periods. Consequently, the intricate and

variable nature of these dynamics precludes the practical implementation of temporal filters

without disregarding these dynamics.



3.6 Validation strategies

An analysis of the model's accuracy was carried out on the chips that were allocated in the

dataset of the test. The metric adopted for the initial validation was the Dice Coefficient. The

Dice Coefficient represents 2 * the Area of Overlap divided by the total number of pixels in

both images with values ranging from 0 to 1, with 1 signifying the greatest similarity

between predicted and truth. Table 5 presents the results of Dice Coefficient for each region

considered for the Irrigated rice mapping.

Table 5. Dice Coefficient for each region considered to mapping Irrigated rice.

Region Evaluated chips Dice Coefficient

Rio Grande do Sul - RS 536 0.69

Santa Catarina - SC 140 0.44

Tocantins - TO 288 0.40

The result of the model evaluation and the visual analysis of the mapping indicate that the

model had a better performance in the state of Rio Grande do Sul, a region with most of the

irrigated rice area. Regarding the detailing of the mapping, the model had greater difficulty

in delimiting the borders of the agricultural plots, which may partially justify the values of

the Dice Coefficient.

3.7 Results

The area resulting from the automatic mapping of irrigated rice from Collection 8 was

compared with the area of total and irrigated rice, adapted from the “Levantamento

Sistemático da Produção Agrícola - IBGE 1986-2020” (EMBRAPA, 2020) (Figure 14).

When comparing the area values of irrigated rice between MapBiomas and the EMBRAPA

dataset, certain trends become evident over the years. This comparison highlights how the

two datasets portray diverse patterns in reporting irrigated rice areas, possibly due to

distinct data sources and methodologies.

The EMBRAPA dataset demonstrates a gradual increase in irrigated rice area, starting with

1.10 Mha in 1985 and reaching approximately 1.30 Mha in 2021. In contrast, MapBiomas

Collection 8 exhibits an initial area of 0.68 Mha in 1985, followed by 0.38 Mha in 1986. It

then showcases an oscillatory trend before peaking at 1.44 Mha in 2021, with the most

recent mapped area in 2022 being 1.45 Mha.



While both datasets illustrate an overall upward trend, the differences in reported values

stem from the complexities of data collection, processing, and methodology. Particularly

significant is the observable variation in the datasets' estimates over the years, underscoring

the importance of methodically evaluating their respective methodologies and sources. This

practice is essential to derive accurate insights concerning irrigated rice cultivation trends in

the mapping regions.

Figure 14. Comparison between rice areas obtained from the MapBiomas Collection 8 and

data provided by the Levantamento Sistemático da Produção Agrícola - IBGE (1986-2020).



4 Irrigated agriculture in semi-arid region

In Collection 8, a notable improvement in the approach employed for classifying the 'Other

irrigation systems' class is worth mentioning. The methodology maintains its foundation in

pixel-by-pixel mapping through the utilization of the Random Forest algorithm. However,

within Collection 8, a novel reference map of irrigated agriculture in the semiarid region was

acquired in collaboration with the National Water Agency (ANA). Additionally, it was also

obtained from ANA, a regular grid, demarcating regions within the semiarid region where

occurrences of irrigated crops are prevalent. These augmentations to the methodology serve

to enhance the accuracy and precision of the mapping process for the 'Other irrigation

systems' class. Figure 15 presents the flowchart of the methodology for 'Other irrigation

systems' classification.

Figure 15. Classification process for mapping ‘Other irrigation systems’ in MapBiomas.

4.1 Image selection

In this new approach for Collection 8, the mapping process relied on the use of yearly TOA

(Top of Atmosphere) mosaics from Landsat Collection 2. These mosaics were supplemented

by a set of spectral indices and statistical measures. This combination aimed to emphasize

and distinguish between areas of irrigated agriculture and the native vegetation. By

incorporating these spectral indices and statistical measures, the methodology gains the

ability to identify and highlight the distinct features that characterize irrigated agricultural

areas within the context of the surrounding natural vegetation.



4.2 Definition of regions for classification

In the mapping of other irrigation systems, the study area was restricted to the Brazilian

semi-arid region. In this region, due to water requirements, irrigation is almost a mandatory

requirement to reduce production risks and/or increase productivity.

In the previous Collections, a total of 34 municipalities were employed as the mapping area

(selected due to their substantial expanse of irrigated agriculture). However, several of these

municipalities also hosted significant non-irrigated agricultural activity, inadvertently leading

to the inclusion of non-irrigated areas being classified as irrigated in the resulting map. The

mapping accuracy was compromised due to the overlap with non-irrigated regions.

With the adoption of the new approach in Collection 8, a substantial enhancement in

mapping accuracy has been achieved. This enhancement is attributed to the utilization of a

regular grid provided by the ANA covering the semi-arid regions with irrigated agriculture.

Each grid cell measures approximately 0.20° x 0.20° in size. This new grid-based approach

has helped to avoid the previous issue of misclassification of non-irrigated areas. Figure 16

presents a comparison between the region adopted in the previous Collections and the new

grid-based region adopted in Collection 8 to map the 'Other Irrigation System' class. This

transition to the grid-based methodology has resulted in improved accuracy and a more

precise representation of irrigated areas.

Figure 16. Comparison between the region adopted in the previous Collections and a new

region adopted in Collection 8 to map ‘Other Irrigation System’ class.



4.3 Classification

4.3.1 Classification scheme

The classification process for the 'Other irrigation systems' class involves the consideration of

two main groups: 'Irrigated agriculture' and 'Non-irrigated agriculture'. To enable the

mapping of this class, training samples are obtained from the reference map provided by the

ANA. These training samples cover both 'Irrigated agriculture' and 'Non-irrigated agriculture'

regions and are used as training for the Random Forest classifier. This trained classifier is

subsequently used to identify areas of irrigated agriculture within the annual Landsat

mosaics. This classification procedure is carried out exclusively within the geographical

boundaries set by the ANA's GRID, ensuring accuracy in identifying irrigated agricultural

regions.

4.3.2 Feature space

For the mapping of 'Other irrigation systems' alongside the data obtained from Landsat

program satellites, supplementary metrics and indices were also calculated to enhance the

identification of irrigated agricultural areas.

Table 6 presents the set of annual metrics used to map irrigated agriculture in the Brazilian

semi-arid region.

Table 6. Set of metrics used and indexes to map irrigated agriculture in the Brazilian

semi-arid region.

Source
Bands and Spectral

indexes
Metrics

Landsat

BLUE

EVI2 Quality Mosaic

Minimum

Maximum

Median

Standard Deviation

GREEN

RED

NIR

SWIR1

SWIR2

TIR1

EVI2 (JIANG et al, 2008)



NDWI (GAO, 1996)

MNDWI (XU, 2006)

CAI (NAGLER et al, 2003)

4.4 Classification algorithm, training samples and parameters

The methodology employed for mapping irrigated agriculture within the semiarid region was

founded on the application of the Random Forest algorithm. It used annual Landsat image

mosaics, incorporating Landsat spectral bands—specifically, BLUE, GREEN, RED, NIR, SWIR1,

SWIR2, and TIR1. These spectral bands yielded valuable insights into both physical and

biological surface attributes, facilitating the accurate differentiation of distinct land cover

classes. Furthermore, statistical metrics such as Minimum, Maximum, Median, and Standard

Deviation were computed for each spectral band, along with the EVI2 Quality Mosaic. This

augmentation aimed to refine the spectral signal of the target class. Additionally, a selection

of vegetation indices, EVI2, NDWI, CAI, and MNDWI, were integrated into the analysis to

further enhance the classification process.

To initiate the process, 10,000 training samples were collected for both the 'Irrigated

agriculture' and 'Non-irrigated agriculture' classes, considering the reference map provided

by the ANA for the year 2019. These training samples were strategically acquired within the

designated grids of the irrigated agriculture region in the semiarid region, as outlined by the

ANA.

The Random Forest model was trained using these training samples and the Landsat

mosaics, with a total of 100 trees in the model. The classification procedure was exclusively

confined to grids demarcated by the ANA, aligning with their predefined geographical

boundaries. The assimilated training samples corresponded to the ANA's reference map,

guaranteeing the accurate representation of 'Irrigated agriculture' and 'Non-irrigated

agriculture' across the region.

4.5 Post-Classification

The post-classification process of irrigation agriculture maps included the application of

temporal and spatial filters.

4.5.1 Temporal filter

In the other irrigation systems mapping, a moving five-year window was also used, but using

a different rule from the center pivot irrigation systems. In this filter, if the evaluated pixel

was in the same class as at least three other pixels (previous, ahead or both), it remains in

that class. However, if the evaluated pixel was not of the same class as at least three pixels

(previous, ahead or both), the class was changed.



4.5.2 Spatial filter

In the other irrigation systems, a spatial filter was used to remove pixels that had less than 6

other connected pixels.



4.6 Results

When evaluating the 'Other irrigation systems' class mapped by MapBiomas Collection 8 and

comparing it with ANA and IBGE data, discernible trends and disparities become evident

(Figure 1). This examination underscores the variability in reported values among the

datasets, which may arise from differing data sources, methodologies, and assessment

scopes.

According to MapBiomas Collection 8, the temporal evolution of the 'Other irrigation

systems' class reveals fluctuating patterns across the years. The mapped area starts at

approximately 0.05 Mha in 1985, undergoes changes throughout the years, and reaches

about 0.21 Mha in 2022.

In contrast, ANA data provides information for specific years, indicating an area of 0.34 Mha

in 2015 and 0.32 Mha in 2019. Similarly, IBGE data, available for 2017, records an area of

0.26 Mha for the 'Other irrigation systems'.

While the datasets exhibit overall upward trends, the variations between reported values

reflect differences in data collection, processing, and methodologies. It is noteworthy that

the ANA and IBGE data, collected at specific intervals, whereas MapBiomas Collection 8

provides a continuous temporal perspective. These disparities emphasize the importance of

evaluation and cautious interpretation when utilizing such datasets to comprehend land use

dynamics and trends of 'Other irrigation systems' class.



Figure 17. Results of the 'Other irrigation systems' class in the semiarid region for the period

from 1985 to 2022 compared to surveys carried out by the Atlas da Irrigação (ANA, 2017,

2021a) and the Censo Agropecuário (IBGE, 2009, 2019).



Pivot Dynamic - Center pivot irrigation information (Beta)

Understanding center pivots irrigation dynamics allows us to improve our understanding

about most parts of irrigated agriculture in Brazil. The first effort to understand irrigation

systems in the MapBiomas project began in Collection 5, with the use of innovative methods

of Artificial Intelligence, through convolutional artificial neural networks to perform semantic

segmentation of pivots throughout the Brazilian territory. In Collection 6 there was an

expansion of the years mapped, with generation of time span maps of the entire MapBiomas

series. In Collection 7.1 in addition to another time series expansion of center pivot irrigation

map, covering from 1985 until 2021, it was also made effort to improve our understanding

about crop dynamics in center pivot irrigation. Then, in Collection 7.1, a methodology was

developed to provide more detailed information about this system, such as the number of

cycles performed per pivot in the crop year, the dates of start and end of each cycle, in

addition to information about accumulated precipitation in each pivot and each crop cycle,

initially only for Minas Gerais state between 2015 and 2021.

In Collection 8, the pivot dynamic was extent to all of Brazil, and the 2022 year was also

processed, providing dynamic information about the Brazilian pivots from 2015 to 2022.

4.7 Overview of the classification method

To provide the information about the dynamic to each pivot, several steps are necessary,

from applying a Deep Learning model for center pivots irrigation to individualize them to

obtaining smoothed time curves to identify the number of annual cycles existing in each of

these pivots. Figure 18 presents all steps of this methodology.



Figure 18. Flowchart of the methodology necessary to obtain the number of cycles per pivot.

1) Obtaining the training dataset for the neural network (Landsat image and Mask of pivots);

2) Training the Deep Learning model for individualization of the pivots; 3) Landsat time series

curve smoothing; 4) Identification of peaks and valleys in the curve; 5) Identification of the

start and end dates of each cycle; and 6) Obtaining number of crop cycles and accumulated

precipitation per cycle per pivot.

4.8 Center pivot individualization

4.8.1 Image selection

To individualize each center pivot irrigation, we used annual mosaics generated from

available images for each year. Therefore, images from the Landsat series were obtained on

the Google Earth Engine platform (Collection 2 Tier 1 TOA) in the period of 2015 to 2022.

Only images with under 80% cloud cover and shadows were considered.

4.8.2 Definition of regions for classification

To individualize each center pivot irrigation, samples were first selected that represent

relevant information about the pivots, so it was decided to select the blocks that contained

at least 5 pivots. Thus, the samples were stratified between test areas (blocks with at least 5

and at most 9 pivots) and training areas (blocks with more than 10 pivots).

Figure 19 presents the blocks used for the RCNN (Region Based Convolutional Neural

Networks) Mask prediction for all Brazil. The Mask R-CNN is a Convolutional Neural Network

(CNN) and state-of-the-art in terms of image segmentation. This variant of a Deep Neural

Network detects objects in an image and generates a high-quality segmentation mask for

each instance.



Figure 19. Tiles (grid in black) for RCNN Mask prediction. Note: Areas without tiles indicate

the non-existence of irrigation center pivots, according to the map made available by ANA

for the year 2019.

4.8.3 Classification

4.8.3.1 Classification scheme

The RCNN was trained to identify and individualize each center pivot irrigation. Semantic

segmentation considers two classes, (binary classification), 1 for ‘pivot’ and 0 for ’non pivot’.

In instance segmentation, however, each pivot is mapped separately, adding one unique ID

for each.

4.8.3.2 Feature space

The Normalized Difference Vegetation Index (NDVI) (ROUSE et al., 1974) was calculated for

each image to generate standard deviation and percentiles metrics, as presented by Table 8.

These metrics were chosen seeking to capture not only the temporal variation of NDVI in the



pivots, but also the variations of other agricultural targets outside of pivots (such as pasture,

barren soil, native vegetation, etc).

Table 8. Indexes and metrics used to individualize center pivot irrigation.

Indexes NDVI

Metrics stdDev, 75th percentile, 100th percentile

4.8.3.3 Classification algorithm, training samples and parameters

Instance segmentation is performed from a pre-trained neural network of Mask RCNN type

architecture. This architecture was developed in Python, using the Pytorch framework, along

with the Detectron 2 package. Figure 20 represents the flowchart of the entire Mask RCNN

training process.

Figure 20. Pipeline to use Detectron2 to pivot instance segmentation.

4.8.4 Post-Classification

Post processing of the center pivot irrigation has two more steps besides the spatial and

temporal filters, which are focused for solving pivots ‘union’ and ‘edge’ problems.

4.8.4.1 Union Problem

The union problem consists of a false pivot generated between real pivots that overlap.

FIgure 21 exemplifies this problem as well as its resolution.



Figure 21. Illustration of the problem of the union between two or more center irrigation

poles. A) union problem; B) result of the filter applied to solve the union problem.

To solve this union problem, it is necessary to find the ID of the false pivot (generated by

union of two or more pivots through a sum of true IDs), and then identify the IDs pivots that

generated this false pivot ID. Based on this information it is possible to replace a false ID to a

true ID, from one of pivots that generated this false ID.

4.8.4.2 Edge Problem

The edge problem is a result of the shape and size of the RCNN Mask input. Some pivots will

inevitably be "cut off" due to the size of the input tiles, i.e. one part of the pivot will be in

one block (tile) and the other part will be in another adjacent block. The edge problem was

solved with the application of two complementary filters (erosion and dilation) and a

reduction by spatial connectivity. Figure 22 shows an example of an application to solve edge

problems.



Figure 22. A) Example of application of morphological filter to solve edge problems. A) tiles

with pivot edge problems; B) erosion filter; C) spatial connectivity Reduction and D)

dilatation filter.

The erosion filter is applied to the tiles to reduce the size of the instances (pivots) with the

goal of isolating them from each other (B). Then, pivots that were "cut off" by the tile of the

RCNN Mask and that exist in the overlap of both boundary images are connected (C). Finally,

after this step it is necessary to apply the morphological dilation filter to return pivots to

their original size (D).

4.8.4.3 Temporal filter

For temporal consistency of the IDs over time, a temporal filter was applied with the goal

that each pivot remains with the same ID over the years. In this step, a reference image was

generated through the accumulation function of all years (2015 to 2022), thus the reference

image has all the pivots of the time series and their respective IDs. An accumulation of pivots

must be calculated for each year, for example, the accumulation of the year 2020 has the

pivots of the years 2015, 2016, 2017, 2018, 2019, and 2020.

4.8.4.4 Spatial filter

A spatial filter was used to remove areas smaller than 10 hectares, so that the noise caused

by the accumulation function is excluded, as shown in Figure 23.



Figure 23. Example of spatial filtering. Pivot polygons in red noise generated by the

accumulation function that are removed through the spatial filter.

4.8.5 Validation strategies

To validate the instance segmentation (Mask RCNN) methodology the Jaccard index was

calculated. The Jaccard index (JACCARD, 1901), also known as the Jaccard similarity

coefficient or intersection over union (IOU), is a statistic used for gauging the similarity and

diversity of sample sets and is defined as the size of the intersection divided by the size of

the union of the sample sets (Figure 24).

Figure 24: Index Jaccard (IOU) calculation.

The results of the RCNN mask were compared both with the result obtained by semantic

segmentation (Unet) and with the ANA data. The spatial similarity of the Mask RCNN with

Unet results obtained for the 2019 year showed a Jaccard index of about 61.7%. When the

Mask RCNN was evaluated with the center pivots of public irrigation by ANA showed 63.1%

similarity. The similarity between ANA and Unet was also assessed, with the results reaching



around 78.4% of the Jaccard index. It is important to note that instance segmentation is a

new methodology that is still under development.

4.8.6 Results

Mask RCNN returns as output a raster of the input mosaic size (15 x 15 km) composed of 0,

which corresponds to no detection of center irrigation pivots and values corresponding to

the ID of the classified pivots. Figure 25 shows the input and output of the RCNN Mask

prediction.

Figure 25. Example of result of the Mask RCNN prediction.

4.9 Center Pivot Information

Crop and environmental characteristics of center pivot irrigation were obtained to each

individual pivot. Thus, using the geometry of each pivot, the following information was

extracted: i) crop cycles number of each pivot; ii) start and end dates of each cycle; iii) crop

cycle length in days of each cycle; and iv) daily average precipitation of each cycle. Besides

that, it was also possible to obtain the information if the pivot was in a perennial cultivation

area, and if it did not present internal coherence – due to multiple crops at the same time or

complex management –, it was not possible to obtain the previous information (i, ii, iii and

iv) and the pivot is defined as a non-classified.

4.9.1 Image selection

The period used to select the images to obtain a temporal EVI2 curve was based on the crop

year. The crop year is different from the conventional year (from January to December), since

the crop year aims to define the period when the cultivation occurs in a determined region.

Thus, depending on the type of agriculture, the crop year can start in any month of the year,

generally following the rainy season, since in this period there is humidity available to crop



development. Thus, to attribute information for each center pivot irrigation, Landsat images

(TOA) were selected from a crop year, to compute the EVI2 time series.

The crop year was defined automatically for each Landsat scene and year. We defined the

crop year as 3 months before and 9 months after the mean vegetative peak month of each

scene, based on an EVI2 curve of MODIS observations.

4.9.2 Method to attribute information to each pivot

4.9.2.1 Crop cycles number

The first information obtained, that is a base to obtaining the others, was the number of

crop cycles of each pivot. An EVI2 curve of Landsat images from the crop year was smoothed

to minimize noise and to reconstruct the time series. The Whittaker method (WHITTAKER,

1922) was used to smooth EVI2 temporal series, since this method presents a great

alternative to smooth and to reconstruct temporal series, most importantly keeping only

meaningful variations and preserving the temporality of them.

Based on the smoothed EVI2 curve, it was possible to identify when inflections occur in the

curve, that is, the change of direction of the curve. Thus, it was possible to identify the

points of valleys (defined as the inflections of change from negative to positive sign), and

peaks (defined as the inflections of change from positive to negative sign) (Figure 26). Finally,

to define the number of cycles, this can be counted as the number of peaks (or valleys minus

one), determining the number of crop cycles in a period.

Figure 26: Peaks and valleys identification based on the smoothed EVI2 time series curve.

4.9.2.2 Start and end cycles dates

After identifying the peaks and valleys over the EVI2 time series, it was possible to determine

the start and end dates of each cycle. In this step we sought to identify the dates of the

valley inflections of the EVI2 curve of each pivot. According to the amount of Landsat images



available in the crop year, where each one represents a binary information of valley (1) or

no-valley (0), it obtained a percentage of presence of pixels identified as valley (1). Then,

after valleys date identification it was checked if the quantity of them was equivalent to the

expected quantity for the number of cycles of the pivot (number of cycles +1). If this

information is true, the pivot is considered well identified, if not, the pivot is considered as

non-classified, since due to the internal dynamics (this usually occurs for pivots with

different crops at the same time) it was not possible to identify a spatial coherence in the

start and end date definition.

The valley dates were used as a base to determine start and end cycle dates. Based on the

daily interval between the two valleys that compose a cycle, the start date was defined as

the 20th percentile value, and the end date as the 80th. This was done to reduce cycle

coverage to the period where the crops were active, eliminating soil management periods

(JÖNSSON and EKLUNDH, 2004). To avoid omitting the planting period, a -15 days buffer was

also added to the start cycle dates.

This cycle delimitation method has some known issues, such as the delimitation of cycles

based only on the time value. Improvements in this area will be sought for future collections.

4.9.2.3 Crop cycle length

Crop cycle length in days was obtained as a difference between the end and start date of

each pivot for each cycle.

4.9.2.4 Average Daily Precipitation

For Precipitation information we used data from Climate Hazards Group Infrared

Precipitation with Stations (CHIRPS) product (FUNK et al., 2015), that provide daily and

sub-daily precipitation information for quasi–global spatial coverage (50°S-50°N), from

1981-present, in a 0.05° x 0.05° of spatial resolution. Based on CHIRPS data an accumulation

precipitation of each pivot was obtained and then this amount of precipitation was divided

by the number of the days of each cycle, resulting in an average daily precipitation per cycle.

4.9.2.5 Additional Information

In addition to the number of crop cycles, start and end dates, and precipitation information,

the product also provides additional information about non-classified, perennial and

sugarcane pivots.

Perennial and sugarcane pivots were identified using the respective maps from MapBiomas

Collection 8, since cycles and environmental information were only accounted for temporary

crop pivots.

Pivots in which it was not possible to identify the start and end dates of each cycle were set

as non-classified. This problem can be due to several factors. For instance, pivot internal crop



dynamics, when there are multiple crops on a single pivot, or the same type of crop,

however at different times. There is also the possibility of errors inherited by the

individualization of pivots methodology, since a not well-defined geometry may encompass

other land uses or surrounding crops. In these situations, it was not possible to identify

coherent start and end dates, since there is no agreement inside the pivot geometry. Figure

27 presents some examples of when it is possible to identify start and end dates and when

this identification is not possible, resulting in non-classified pivots.

Figure 27: Examples of start and end dates identification, and limitations that cause

non-classified pivots.

Example 1 shows a pivot in three different Landsat dates. The shaded area represents the

area identified as a valley date. In the first image (16/01) there are approximately one

quarter of the pivot identified as a valley. This amount is even less in 17/02. However, in the

second date (01/02), most of the pivot was identified as a valley, providing valley date

information.

Example 2, on the other hand, presents a more complex situation. In these three dates

(16/01, 01/02, and 17/02), there is not a single image where most of the pivot is identified as

valley. In this situation there is no possibility to obtain start and end dates by the same

method as before (statistical mode), so pivots in this or similar situations were set as

non-classified. This is a known flaw in the methodology and improvements will be sought in

future collections.



4.9.3 Validation strategies

A validation approach was carried out to Minas Gerais state, the state with the highest

number of pivots in Brazil. Thus, for the state of Minas Gerais alone, 250 pivots were

randomly selected, which corresponds to between 3 and 6% of the total number of pivots in

this state, depending on the year, since the number of pivots increases over the years. These

pivots were evaluated year by year, visually, to validate the consistency in terms of class,

start and end dates of each cycle, and the consistency of number of cycles.

The following errors were considered: (1) cycle number errors, when a pivot shows a

difference between the number of cycles identified in the methodology and the visual

analysis; (2) dates errors, when the pivot has at least one cycle where the start and end

dates are not consistent with the expected in the vegetation index curve; (3) class errors,

where the pivot was misclassified in any way. The first two errors can occur at the same

time, and when so it is likely that the pivot was mostly not well defined. However, the errors

individually do not indicate that the pivot is entirely wrong. Class errors can be associated

with an omission from the sugarcane and perennial masks. Cycle number and date errors

individually show that a cycle in the pivot was misidentified in some way, but not necessarily

all its cycles. Figure 28 presents the rates (%) of pivot without any kind of error, with only

one error and with two errors.

Figure 28: Percentage of pivots without errors, with only one error and with two errors

identified in 250 pivots selected randomly.

The results presented in the Figure 28 above, show that about 57.2 to 68.4% of pivots

randomly selected have none of the analyzed errors, while around 24.4 to 31.2% of samples

presented only one error, and 7.2 to 12.4% of data evaluated presented two types of errors.



The analysis also provides information about the type of errors identified. Figure 29 presents

the error rates identified by the pivots sample randomly selected.

Figure 29: Percentage of type of errors identified in 250 pivots selected randomly.

Figure 29 informs us that we have two main types of errors on pivots. For instance, errors

due to incorrect cycle accounting are about 15 to 25% of the errors identified. About 19.6 to

25.2% of errors are related to errors in identifying the start and end dates of cycles, and less

than 7% of errors are related to errors in pivot class, i.e. classification of the type of use and

coverage of that pivot.

4.9.4 Results

The results presented in Figure 30 highlight about the exemple about the expansion of the

pivots over Minas Gerais, detailing about the intensification of the agriculture through the

irrigation, showing the number of pivots, for each year, with 1, 2 and 3 cycles.



Figure 30: Number of center pivot irrigation with one, two and three cycles, perennial,

sugarcane and non-classified considering all Brazil.

Overall, in Brazil, 19% of center pivot irrigation has one crop cycle, while 46% present two

crop cycles, and approximately 1% were cultivated three times over the analyzed years

(2015-2022). In addition, approximately 24% of center pivot irrigation was not classified as a

function of methodology limitation. Around 6% of these pivots were identified as perennial

pivots and 5% as sugarcane.

In addition to this information on the expansion and intensification of agriculture, in terms of

the number of gullies, some other information on the dynamics of gullies can also be

obtained from this product. For example, for the state of Minas Gerais, some general

information about the region’s crop dynamic was summarized. It was possible to identify the

months of start and end cycle, the number of days of each cycle and how much precipitation

occurred in this period, also to each cycle. Figure 31 presents a temporal average of this

information for the pivots identified with crop dynamics (pivots with 1, 2 or 3 cycles), in the

Minas Gerais state.



Figure 31: Summary of pivot dynamics for Minas Gerais state.

In Figure 31 presented above, it is possible to see that both the start and end months of each

cycle, as well as its duration and daily average precipitation varies according to the number

of times the pivots have been cultivated in the year.

For instance, on pivots with one single crop cycle, the cultivation usually starts in December

with a harvest occurring around July. Pivots with only one cycle present a longer cycle

duration, of approximately 155 days. The daily precipitation is about 2.94 mm/day, since the

cycle also extends over rainy (December, November, January and February, June and July)

and dry (May, June and July) months in this region.

For pivots that present a double crop there is a different dynamic. In these pivots the cycle

duration is around 115 days for the first cycle and around 107 days for the second cycle.

Comparing pivots with single and double crops it is possible to verify that for double-crop

pivots the period when the cultivation occurred was usually earlier than the single-crop

pivots, with planting starting around November and harvesting around March. As this first

cycle of the double crop pivots is concentrated in the rainiest months of this region, the daily

average precipitation is higher, around 6.89 mm/day. Regarding the second cycle of

double-crop pivots, this usually starts planting around April and harvesting usually occurs in

August. Because it comprises mainly the winter months, this period presents low

precipitation, with a rate of approximately 0.58 mm/day, indicating that only the

precipitation of the period is not sufficient for the development of the crop, requiring the

use of an irrigation system for this second harvest.

For pivots with triple crops the crop duration is even shorter than pivots with one or double

crops. In these pivots with triple-crops, generally the cycles extend from 80 to 89 days. In



addition, the period of cultivation of the first cycle starts earlier than pivots with single or

double crops, starting in October and the harvest occurring in January. The second cycle

normally starts in February and the harvest occurs in May, while the third cycle extends from

July to September. The first two cycles of triple-crop pivots take place at least partially in the

region's rainy season, with a rate about 6.92 mm/day for the first cycle and 2.66 mm/day for

the second cycle, indicating a lower dependency of the irrigation system in the first cycle

compared to the second one. However, during the third cycle precipitation rate is about 0.56

mm/day, suggesting a significant increase of irrigation importance for crop development.
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