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1 Overview

The Brazilian coastal zone presents diverse coastal environments that evolved during

the Quaternary in response to changes in climate and sea-level changes, showing an

interaction between different sediment supplies and a geologic heritage that dates back to

the breakup of South America and Africa (Dominguez, 2009). Among this diversity of coastal

features, four classes are mapped in the MapBiomas Collection 7; Mangroves, Beaches and

Dunes, Aquaculture, and Hypersaline tidal flats.

Table 1, show the evolution of coastal features mapped in each collection as well as the

changes in the methodological aspects of each collection.

Table 1 - Overview of the Cerrado MapBiomas Collections since their first version. In the method column, ‘EDT’ means
‘Empirical Decision Tree,’ and RF refers to ‘Random Forest’.

Collection Range Method Classes Improvements
1.0 2008-2015 EDT No Coastal-Specific

Mappings
- First collection

2.0 2000-2016 EDT Mangroves, Beaches &
Dunes

- First two coastal classes

2.3 1985-2016 EDT Same as Collection 2.0 --
3.0 1985-2017 RF Mangroves, Beaches &

Dunes
- Random Forest
- Temporal stability is used to
generate a large training dataset
- Expanded to the entire Landsat
Temporal Series
- Better Quality Median
Composites

3.1 1985-2017 RF Same as Collection 3.0 --
4.0 1985-2018 RF and U-net Mangroves, Beaches,

and Dunes, Aquaculture
- Aquaculture/Salt-culture is added
as a coastal feature
- Improvements in temporal
consistency through additional
post-processing/ filters

4.1 1985-2018 RF and U-net Same as Collection 4.0 --
5.0 1985-2019 RF and U-net Mangroves, Beaches &

Dunes, Aquaculture,
Hypersaline Tidal Flats

- Hypersaline Tidal Flats are added
as a coastal feature (also known as
“Apicum”)

6.0 1985-2020 RF and U-net Same as Collection 5 - Snad Spots is now a feature that
integrates Beach and Dune, coastal
class

7.0 1985-2021 RF and U-net Same as Collection 5 - A new version of the U-net
classifier.

7.1 1985-2021 RF and U-net Same as Collection 5 --
8.0 1985-2022 RF and U-net Same as Collection 5 - Enhancements of the

Deep-Learning Algorithms
- Enhancements in temporal
consistency through additional
post-processing/ filters



In comparison to Collection 7, Collection 8 of the coastal zone classes presents small

methodological changes, affecting only the Mangrove-related post-processing filters and a

better-designed and trained version of the U-net derived “Hypersaline Tidal Flats”. In

Collection 7, the “Apicum”/Salt Flat theme was also classified using the Deep Learning

algorithm, the U-NET classifier. Now, supported by the improvement in the context domain,

the “Hypersaline Tidal Flats” area oscillation, former “Apicum”, is much smaller. The whole

classification process is described below in Figure 1.

Figure 1 - All data processing occurs within the Google Earth Engine - GEE platform, except for the aquaculture/saline
pattern and salt flat classification, which is dependent on the TensorFlow library. In green are steps related to sampling
design. In yellow are steps related to classification. In red is the mapping accuracy evaluation stage.

2 Landsat image mosaics

The classification of the cross-cutting theme “Coastal Zone” used Landsat mosaics that

differed from the mosaics used to classify the natural vegetation of the Brazilian biomes. The

coastal mosaics were defined to preserve the maximum of the coastal zone land area while

capturing the smallest possible cloud cover. These Landsat mosaics are the third generation

of the methodology developed specifically for these cross-cutting themes.

2.1 Definition of the temporal period

Coastal areas are severely affected by atmospheric nebulosity, a condition that is

intensified by its proximity to the oceans and its tropical location. On the other hand, the

attempt to identify a time interval that covers only the driest season of the year, as an

alternative to reduce cloud persistence ends up severely reducing the number of images

available to cover the entire coastal region. Thus, the annual cloud-free composites are

generated, ranging from the 1st of January to the 31st of December.



2.2 Mosaic Subsets

Since the Brazilian coastal zone (BCZ) is an extensive region, approximately 8,500

kilometers from Oiapoque to Chui (without counting reentrances), and affected by a variety

of atmospheric systems, of lesser or greater influence of nebulosity, the BCZ is here divided

into 7 different sectors, Figure 2.

Sector 1 - Amapa (AP), coastal region of Amapa. Sector 2 - Marajo Island (MAR),

coastal region of Marajo Island. Sector 3 - Para / Maranhao (PAMA), a coastal sector of the

states of Para and Maranhao. Piaui / Bahia (PIBA), a coastal sector of the states of Piaui to

Bahia. Sector 5 - Espirito Santo / Sao Paulo (ESSP), a region that includes the states of

Espirito and São Paulo. Sector 6 – Parana/Laguna (PRLA), a coastal region that goes from the

state of Parana to the municipality of Laguna in Santa Catarina, and finally, Sector 7 (LARS), a

region that ranges from Laguna to the state of Rio Grande do Sul.

Figure 2 - The seven sectors delimited in different colors, along the
Brazilian Coastal Zone (BCZ).

2.3 Image selection

The cloud/shadow removal script takes advantage of the Landsat Collection 1 Level-1
QA band and the GEE median reducer. In Collection 1 Tier 1 data, each pixel in the QA band



contains unsigned integer values representing certain surface, atmospheric, and sensor
conditions that may affect the overall usefulness of a given pixel. When effectively used, QA
values can improve the data integrity by indicating which pixels might be affected by
instrument artifacts or subject to cloud contamination (USGS, 2017). In conjunction with that,
GEE can be instructed to pick the median pixel values in a stack of images. By doing so, GEE
rejects values that are too high (e.g., clouds) or too low (e.g., shadows) and picks the median
pixel value in each band over time, Figure 3.

Figure 3 - Left, Collection 2 “cloud-free composite.” Right, Collection 8 “cloud-free composite.”

2.4 Final quality

The mosaic quality is related to Landsat’s cloud-free availability during the image

selection period. However, from 1985 to March 1998, only the Landsat 5 satellite remained

operational. In this period, for the BCZ, the average number of images per year was ~500. In

the last decade, between 2008 and 2018, this figure tripled to ~1500 images per year, as

shown in Figure 4.

Figure 4 – Landsat image availability from 1985 to 2018. The bars show the distribution of Landsat images along the time
series. L5 stands for Landsat 5, L7 refers to Landsat 7, and L8 stands for Landsat 8.



3 Classification

The automatic classification of the Landsat mosaics was mainly performed on the

Google Earth Engine platform, based on the Random Forest classifier (Breiman, 2001). The

Salt-flat and Aquaculture classes were Deep-Learning dependent and were classified outside

the GEE.

3.1 Classification scheme

Each interested class was classified separately. In account of this, four independent
classification processes were performed: 1) Mangrove; 2) Beaches and dunes; 3) Apicum;
and 4) Aquaculture. The classification process was carried out considering only two possible
classes for each pixel, the interest class (Mangrove, Beaches, Dunes, and Sand Spot, Salt flat,
and Aquaculture) or the non-interest class (all different from the interest class).

We have selected training points based on reference maps and the MapBiomas
Collection 6 for the supervised classification of the Landsat mosaics. The details of the
parameters used in the Random Forest classifier, the reference maps used for each interest
class, and the feature space produced for each classification are presented in the following
sections.

3.2 Reference Data

For each class, a dataset of reference data was used to guide the generation of training
samples. Table 2 shows the references used for each one of the coastal zone classes.

Table 2 - Reference datasets to guide training samples of coastal zone classes in Collection 7.

Class References

Mangrove MapBiomas Collection 6, Giri et al., 2011, ICMBio
Mangrove Attlas (ICMBio, 2018), Global Mangrove
Watch (Bunting et al., 2018; Thomas et al., 2018), plus visual
inspection.

Aqua/Salt-Culture MapBiomas Collection 6, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Barbier and Cox, 2003; Guimarães et al., 2010; Prates,
Gonçalves and Rosa, 2010, Queiroz et al., 2013; Tenório
et al., 2015; Thomas et al., 2017, plus visual inspection

Apicum/Salt flat MapBiomas Collection 6, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Prates, Gonçalves and Rosa, 2010, plus visual inspection.



Beaches, Dunes and Sand Spots MapBiomas Collection 6, Atlas Dos Remanescentes
Florestais da Mata Atlântica (SOS Mata Atlântica, 2020),
Prates, Gonçalves and Rosa, 2010, plus visual inspection.

3.3 Coastal Zone Feature Space

Tables 3 and 4 show all spectral indices and bands used for the BCZ classification.
Table 3 – Spectral Indices used for coastal zone classification.

Index Expression
Reducer

Reference

EVI2 2.5 * ((NIR - RED) / (NIR + 2.4*RED + 1))
Median and Standard

Deviation
Liu and Huete, 1995

NDVI (NIR - RED) / (NIR + RED)
Median and Standard

Deviation
Tucker, 1979

MNDWI (GREEN - SWIR1) / (GREEN + SWIR1)
Median and Standard

Deviation
Xu, 2006

NDSI (SWIR1 - NIR) / (SWIR1 + NIR)
Median and Standard

Deviation
Rogers and Kearney,
2004

MMDI Modular Mangrove Detection Index
Median and Standard

Deviation
Diniz et al., 2019

Table 4 - Table of bands used to classify coastal zone classes.

Variable Description Reducer

GREEN Landsat Green band median value
Median and Standard
Deviation

RED Landsat Red band median value
Median and Standard
Deviation

NIR Landsat NIR band median value
Median and Standard
Deviation

SWIR1 Landsat SWIR1 band median value
Median and Standard
Deviation

SWIR2 Landsat SWIR2 band median value
Median and Standard
Deviation

3.4 Classification algorithm, training samples, and parameters

When lacking reference maps that match the classes and/or year to be classified,

reference maps of the closest possible timeframe to the median composites were used.

When no reference map was available, then the classification results of the previous year

were used for subsequent training. This was done for each one of the years without an

external reference training guide. Table 5 and 6, shows the Random Forest and U-net

parameters used to classify each one of the years.



Table 5 - Random Forest parameters used to classify each one of the years. Mangroves and Beaches, Dunes and Sand spots.

Parameter Value

Number of trees 100

Number of points 100000

Number of Variables 20 (Coastal Zone)

Classes 2 (binary classification)

Table 6 - U–Net parameters used to classify each one of the years. Aquaculture and Salt flat classes.

Parameter Value

Classifier U-Net

Tile-Size 256 x 256 px

Optimizer SGD

Learning Rate 0.1

Momentum 0.9

Decay 1e-4

Samples 10000 (geometries)

Attributes MNDWI, NDVI, NDSI

Classes 2 (binary classification)

3.4.1 Mangroves

As in any supervised method, the Random Forest classifier needs to rely on a training

dataset. For mangrove cover recognition, the training data was obtained from MapBiomas

Collection 6, Giri et al., 2011, Atlas dos Manguezais do Brasil (ICMBio, 2018), Global Mangrove

Watch (Bunting et al., 2018; Thomas et al., 2018) and visual inspection, Figure 5. The

consolidated results of the mangrove distributions are available in Diniz et al., 2019.

Figure 5 - Global Mangrove Cover data was used as a mangrove mapping reference, from 1999 to 2002.



3.4.2 Hypersaline Tidal Flat

Generally, the less frequently flooded area of a mangrove swamp, in the transition to

topographically elevated lands, is usually devoid of arboreal vegetation. In Brazil, this area is

called “Apicum”, or Hypersaline Tidal Flat. In the international scientific literature, this

transition zone is usually called salt flat or hypersaline tidal flat. As shown in Table 1, three

different reference maps were here used, the “Atlas dos Remanescentes Florestais da Mata

Atlântica” (SOS Mata Atlântica, 2020) from 2019/2020, covering the Mata Atlantica coastal

region and the “Carta de Sensibilidade Ambiental ao Oleo -Para-Maranhão-Barreirinhas”

referent to 2017 and covering most of the Brazilian north coastal region and the data from

the MapBiomas Collection 6, Figure 6.

Figure 6 – Apicum reference maps, the “Atlas Dos Remanescentes Florestais da Mata Atlântica” from 2019/2020, covering
the Forest Atlantic coastal region and the “Carta de Sensibilidade Ambiental ao Oleo -Para-Maranhão-Barreirinhas 2017”,
covering most of the Brazilian north coast region

3.4.3 Beaches and Dunes

Mapped without distinction between one another, here the “Beaches and Dunes” class

refers to sandy strands, bright white in color, where there is no predominance of vegetation

of any kind. As shown in Table 1, the training data for this land cover was obtained from

MapBiomas Collection 6 and available reference, Figure 7.



Figure 7 - The training data for this land cover was obtained from MapBiomas Collection 6 and from available
reference, as shown in Table1”.

3.4.4 Aquaculture/Salt Culture

Compared to previous Collections, Collection 8 aquaculture mapping consolidated the

use of the Deep-Learning model in replacement of the traditional Random Forest Algorithm.

Its results are now published (Diniz et al., 2021). In this scenario, traditional machine learning

algorithms use spectral-temporal data to classify targets according to similarities of their

spectral-temporal patterns (Breiman, 2001). Although temporal and spectral properties might

not be enough to discriminate “super-similar” targets. Targets that behave similarly in both

spectral and temporal domains. That is the case for most surface water targets, such as

aquaculture ponds, rivers, lakes, and open waters, Figure 8.

Water is water, and unless it presents a high concentration of external compounds

(minerals, suspended sediments, algae, etc.), not much can be done to differentiate

between numerous surface water targets spectrally. On the other hand, the temporal

domain may not present much valid discriminatory data either. In Brazil, aquaculture is a

traditional and coastal-related economic activity. Thus, in 35 years of data, a diverse set of

aquaculture frequencies may exist (Barbier and Cox, 2003; Guimarães et al., 2010; Queiroz et al.,

2013; Tenório et al., 2015; Thomas et al., 2017). As a result, the temporal domain renounces to

distinguish between well-consolidated aquaculture, main river channels, and open waters

once all these features present high temporal persistence throughout the entire time series.



Figure 8 – Spectral and temporal patterns of the aquaculture, rivers, and open waters classes. In the top-left corner, the
median cloud-free composite from Macau-RN, northeast of Brazil. The markers in dark-blue, green, and red represent
aquaculture, open water, and river samples. In the top-right, NMDWI values for each one of the samples. In the
bottom-left, JRC occurrence data. In the bottom-right is the occurrence frequency of each one of the samples.

In cases like this, the “context domain” may be key to distinguishing between rivers,

aquaculture, and open waters pixels. In the context analysis scenario, the U-Net:

Convolutional Networks (Abadi et al., 2015) have the advantage of predicting the class label of

each pixel by providing as input a local region (patches or chips) around that pixel. Such a

characteristic of working with “patches” or “chips” is what gives the U-Net the ability to

access the "context domain" of the image instead of using isolated pixels. The U-Net initial

training was guided by Collection 6 and available reference data.

4 Post-classification



Due to the pixel-based nature of the classification method and the very long temporal

series, a chain of post-classification filters was applied. The post-classification process

includes the application of a gap-fill, a temporal, a spatial, and a frequency filter.

4.1 Gap-Fill filter

The chain starts by filling in possible no-data values. In a long time-series of severely

cloud-affected regions, such as tropical coastal zones, it is expected that no-data values may

populate some of the resultant median composite pixels. In this filter, no-data values

(“gaps”) are theoretically not allowed and are replaced by the temporally nearest valid

classification. In this procedure, if no “future” valid position is available, the no-data value is

replaced by its previous valid class. Up to three prior years can be used to fill in persistent

no-data positions. Therefore, gaps should only exist if a given pixel has been permanently

classified as no-data throughout the entire temporal domain. A mask of years was built to

keep track of pixel temporal origins, as shown in Figure 9.

Figure 9 – Gap-filling mechanism. The following valid classification

replaces existing no-data values. If no “future” valid position is

available, then the no-data value is replaced by its previous valid

classification based on up to a maximum of three (3) prior years. A

mask of years was built to keep track of pixel temporal origins.

4.2 Temporal filter

After gap filling, a temporal filter was executed. The temporal filter uses sequential

classifications in a 3-year unidirectional moving window to identify temporally

non-permitted transitions. Based on a single generic rule (GR), the temporal filter inspects

the central position of three consecutive years (“ternary”). If the extremities of the ternary

are identical, but the center position is not, then the central pixel is reclassified to match its

temporal neighbor class, as shown in Table 6.



Table 6 - The temporal filter inspects the central position for three consecutive years, and in cases of identical extremities,

the center position is reclassified to match its neighbor. T1, T2, and T3 stand for positions one (1), two (2), and three (3),

respectively. GR means “generic rule”, while Mg and N-Mg represent mangrove and non-mangrove pixels.

Rule   Input (Year)   Output  
T1 T2 T3 T1 T2 T3

GR Mg N-Mg Mg Mg Mg Mg
GR N-Mg Mg N-Mg N-Mg N-Mg N-Mg

4.3 Spatial filter

Next, a spatial filter was applied. To avoid unwanted modifications to the edges of the

pixel groups (blobs), a spatial filter was built based on the "connectedPixelCount" function.

Native to the GEE platform, this function locates connected components (neighbors) that

share the same pixel value. Thus, only pixels that do not share connections to a predefined

number of identical neighbors are considered isolated, as shown in Figure 10. In this filter, at

least ten connected pixels are needed to reach the minimum connection value.

Consequently, the minimum mapping unit is directly affected by the spatial filter applied,

and it was defined as 10 pixels (~1 ha).

Figure 10 – The spatial filter removes pixels that do not share neighbors of identical value. The minimum connection value

was 10 pixels.



4.4 Frequency filter

The last step of the filter chain is the frequency filter, as shown in Figure 11. This filter

considers the occurrence frequency of a given class throughout the entire time series. Thus,

all class occurrences with less than 10% temporal persistence (3 years or fewer out of 37)

are filtered out and incorporated into the non-class binary. This mechanism contributes to

reducing the temporal oscillation of the classification signal, decreasing the number of false

positives, and preserving consolidated class pixels.

Figure 11 – Red, yellow and green represent mangrove pixels with high (23 or more years, y >=23), average (between 11 and

22 years, 11 <= y <= 22), and low (ten years or less, y < 11) occurrence frequencies, respectively. The top image shows

mangrove pixels before applying the frequency filter. The bottom image shows mangrove pixels after applying the frequency

filter. The black boxes are centered on areas significantly affected by the filter. All mangrove occurrences with less than 10%

temporal persistence (3 years in 33 possible years) were filtered out.



4.5 Integration with biomes themes

After applying the filter chain, the cross-cutting themes and the biomes data are
integrated. This integration is guided by specific hierarchical prevalence rules (Table 6). As
the output of this step, a final land cover/land use map of Brazil for each year.

Niche-specific classes or uses; likewise, coastal-related features such as Mangroves,
Beaches, Dunes, and Aquaculture, as well as anthropic transition widely distributed
throughout Brazil’s territory, tend to occupy the top positions of the Prevalence rank, as
seen below in Table 6.

Table 6 - Prevalence rules for combining the output of digital classification with the cross-cutting themes in Collection 8.

Class Pixel Value Prevalence
Mining 30 1
Beach, Dune, and Sand Spot 23 2

Mangrove 5 3
Aquaculture/Salt-Culture 31 4
Hypersaline Tidal Flat 32 5
Urban Infrastructure 24 6
Sugar Cane 20 7
Soybean 39 8
Rice 40 9
Other Temporary Crop 41 10
Perennial Crop 36 11
Coffee 46 12
Citrus 47 13
Other Perennial Crop 48 14
Temporary Crop 19 15
Forest Plantation 9 16
Rocky Outcrop 29 17
Other Non-Vegetated Areas 25 18
River, Lake, and Ocean 33 19
Forest Formation 3 20
Savanna Formation 4 21
Wetland 11 22
Grassland Formation 12 23
Pasture 15 24
Mosaic of Uses 21 25
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