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1. OVERVIEW OF THE CERRADO CLASSIFICATION

The classification approach for the Cerrado biome in the MapBiomas project

involved the application of decision trees to generate yearly maps of the dominant native

vegetation (NV) types, categorized into four groups: Forest Formation, Savanna

Formation, Wetland, and Grassland Formation. Over time, the method for generating

these maps underwent refinements, resulting in significant improvements from the first

MapBiomas Collection to the current version. The overall classification process for

Cerrado native vegetation encompassed several steps. Firstly, the optimal time of year for

constructing annual Landsat mosaics was selected. Then, remote sensing metrics were

defined as potential predictors (feature space). Reference training samples were created

to calibrate the classification algorithm. Post-classification treatments were applied to

eliminate noise and generate a consistent time series. Finally, the resulting maps were

integrated with other cross-cutting themes. Classification results were evaluated through

visual inspection and sample-based validation analysis. The methodological evolution of

Cerrado native vegetation (NV) classifications is available in Table 1.

In the initial two collections, empirical decision trees were employed as the

classification approach, with nodes defined based on expert knowledge of the spectral

features of each class. Collection 1.0 covered the period from 2008 to 2015 and was

published in 2016, while Collections 2.0 and 2.3 covered the period from 2000 to 2016

and were published in 2018. The Random Forest (RF) method was implemented for

classification in Collection 2.3. Subsequently, the empirical decision tree was used to

generate stable samples (2000–2016), which were then utilized to train the Random

Forest models for classifying the entire time series. Collections 3.0 and 3.1 expanded the

covered period to 1985–2017, and a methodological paper was published (Alencar et al.,

2020). Collections 4.0 and 4.1 exhibited notable enhancement in the precision of mapping

compared to their predecessors and abandoned the use of empirical decision trees to

generate training samples. Instead, these collections relied on collecting training samples

based on stable samples from the previous collection (3.1).

To mitigate potential bias in the training dataset, reference maps (PRODES) of

remaining native vegetation have been implemented since Collection 5.0 to delimit the

area for collecting training samples for NV classes. Collection 6.0 expanded the classified

time series (1985–2020), included a new NV class (Wetland), implemented the surface

reflectance mosaic, refined the feature space, and used more reference NV maps to filter

the training samples (“Inventário Florestal do Estado de São Paulo” and “Base Temática

Digital do Estado do Tocantins”). Collection 7.0 processed the time series between 1985

and 2021, introduced a new class in the legend (Rocky Outcrop), refined the training

samples by incorporating an outlier filter based on GEDI (Global Ecosystem Dynamics

Investigation), and improved the hyperparameters of the RF classifier. Additionally, the

Wetland class was classified into the general map, contrary to Collection 6.0, where it was



a pseudo-cross-cutting theme, by including the Height Above the Nearest Drainage

(HAND) as a predictor in the feature space. The changes made in Collection 7.1 pertain to

the application of new temporal filter rules to the last year to avoid minor overestimation

of NV loss, as observed in previous results.

The present Collection (8.0) updated the temporal range (1985–2022) and

introduced three significant methodological advancements. Firstly, a complete

regionalization of the classification workflow was achieved, encompassing

hyperparameter calibration, training sample selection, and classification models. The

delineation of regions was based on the ecological attributes of the Cerrado landscapes,

such as seasonality (Figure 1). Secondly, an extensive revision of the functioning of

temporal filters applied to the raw annual classifications was conducted. Although the

rationale behind this phase remained largely unchanged since Collection 3.0, earlier

collections included rules concerning new classes. Therefore, a new filtering strategy was

developed to eliminate false NV loss and NV gain-type transitions throughout the time

series. The third major innovation in Collection 8.0 is the expanded mapping of Rocky

Outcrop areas, accompanied by a refined classification strategy specific to this theme.

Additionally, an improvement was made in the classification flow by refining the spatial

mask used for training sample selections. Notably, NV samples falling within MapBiomas

Alert and SAD Cerrado polygons for deforestation during the 2019–2022 period were

excluded. All the classification and post-process scripts used in the Cerrado biome are

available at: https://github.com/mapbiomas-brazil/cerrado.

Table 1. Overview of Cerrado collections since their first version. In the method column, “EDT”

means “Empirical Decision Tree”, and “RF” means “Random Forest”.

Collection Range Method Mapped classes Mainly improvements

1.0 2008 – 2015 EDT Forest - First collection

2.0 2000 – 2016 EDT Forest, Savanna, Grassland
- New NV Classes (Savanna and
Grassland)

2.3 2000 – 2016 RF

Forest, Savanna, Grassland,
Mosaic of Agriculture and
Pasture, Other
Non-vegetated Area, Water

- New classifier (Random Forest)
- New auxiliary classes
- Training samples derived from
stable areas

3.0 1985 – 2017 RF Same as Collection 2.3

- Expanded to the entire Landsat
series
- Improvement in training samples
quality through outlier detection

3.1 1985 – 2017 RF Same as Collection 3.0
- Ecoregions (38) substituted regular
tiles as the classification unity

https://github.com/mapbiomas-brazil/cerrado


4.0 1985 – 2018 RF Same as Collection 3.1
- Improvement in training samples
quality by confronting with new
reference maps for NV

4.1 1985 – 2018 RF
Forest, Savanna, Grassland,
Pasture, Agriculture, Other
Non-vegetated Area; Water

- New feature space derived from
variable importance analysis
- Improvements in temporal
consistency through additional
post-processing/ filters
- Significative accuracy gain related
to better mapping of NV

5.0 1985 – 2019 RF Same as Collection 4.1

- Improvements in the spatial
contiguity among classification
regions
- Vegetation dynamics product
(vegetation loss and secondary
vegetation)

6.0 1985 – 2020 RF

Forest, Savanna, Wetland,
Grassland, Mosaic of
Agriculture and Pasture,
Other Non-vegetated Area,
Water

- New NV Class (Wetland)
- New classification mosaics (SR)
- Improvements in the statistical
methodology applied to define the
feature space
- New reference maps

7.0 1985 – 2021 RF

Forest, Savanna, Wetland,
Grassland, Rocky Outcrop,
Mosaic of Uses, Other
Non-vegetated Area, Water

- New class (Rocky Outcrop)
- Improvement in training samples
using GEDI data to filter outliers
- Accuracy gain related to better
mapping of NV

7.1 1985 – 2021 RF

Forest, Savanna, Wetland,
Grassland, Rocky Outcrop,
Mosaic of Uses, Other
Non-vegetated Area, Water

- Improvement of temporal filter
rules in the last year (2021)

8.0 1985 – 2022 RF

Forest, Savanna, Wetland,
Grassland, Rocky Outcrop,
Mosaic of Uses, Other
Non-vegetated Area, Water

- Regionalization of the workflow,
including sample selection,
hyperparameter calibration, and
classification model
- Extensive revision of the temporal
filtering strategy and rules.
- Expansion of the classification of
the Rocky Outcrop theme

The initial four collections utilized a grid at a 1:250,000 scale as the primary

classification unit, where each grid cell (n = 172 tiles) was independently analyzed by the



classification algorithm. However, this approach often resulted in inconsistent contact

lines between grids, leading to undesirable classification boundaries. With the

introduction of Collection 5.0, a new set of classification units was implemented based on

the regional variation of biophysical and land-use attributes. To achieve this, the Cerrado

19 ecoregions proposed by Sano et al. (2019) were subdivided, taking into account Brazil's

major watersheds and the regional-scale spatial pattern of land-use and land-cover

classes in Collection 3.1 (2017). As a result, 38 final regions were defined, replacing the

need for regular grids and better compartmentalizing the environmental heterogeneity

typical of the Cerrado biome. Such heterogeneity has the potential to affect the spectral

signatures of NV, even within the same NV class.

In Collection 8.0, the same classification regions as in Collection 7.0 were utilized,

and the number of regions remained at 38. However, we modified their perimeters while

considering the NV seasonality. To achieve this, we computed the Normalized Difference

Vegetation Index (NDVI) between 2017 and 2020 for each available Sentinel 2 (SR) scene.

By conducting a per-pixel subtraction of the 90th and 10th percentiles (p90-p10), we were

able to discriminate regions with high NV seasonal variation. This product was then used

to adjust our classification regions empirically, ensuring that areas with distinct phenology

and spectral signatures did not integrate into the same classification region (Figure 1).

Figure 1. Classification regions used in Collection 6.0 (left) versus in Collection 7.0 and all

subsequent collections (right). The regions are depicted as black polygons, with an NV seasonality

map in the background. The NV seasonality is represented by different colors, with green

indicating low seasonality (p90-p10 ≥ 0 and ≤ 0.4), and yellow and red indicating medium and high

seasonality (p90-p10＞0.4), respectively. Each polygon is labeled with its corresponding ID

number. Collection 8.0 retained the same classification regions as in Collection 7.0.



2. LANDSAT IMAGE MOSAICS

The initial step in classifying the native vegetation of Cerrado involved generating

the mosaic of images used in the classification process. Until Collection 5.0, the

classification of Cerrado NV utilized Landsat 5 (TM), 7 (ETM+), and 8 (OLI) top of

atmosphere (TOA) data. However, since Collection 6.0, the TOA data was abandoned in

favor of surface reflectance (SR) data. The mosaic of images is created by composing pixels

extracted from all the available images during a defined period within a year. Statistical

measures including median, amplitude, standard deviation, and minimum were computed

for each pixel each year. These pixels were then aggregated annually, resulting in the

production of Landsat mosaics that are subsequently used in the classification process.

Several tests were conducted to determine the optimum period of images to

compose the annual mosaics. Due to the impact of seasonality on the spectral response of

Cerrado vegetation, compositions of images from both the rainy and dry seasons were

assessed. Tests included the classification of images from the end of the rainy season,

when the Cerrado vegetation is still vigorous, and there is a higher probability of obtaining

images with reduced cloud cover compared to the peak of the rainy season. Additionally,

tests were carried out with image compositions from the end of the dry season, covering

the months between July and September. The results of these tests showed that using

images from the rainy season would lead to a greener overall mosaic, but with an

increased likelihood of commission errors in the classification of the Forest class.

However, if images acquired in the last three months of the dry season were chosen, the

mosaic would be drier, resulting in an underestimation of forest coverage, primarily due to

the reduced potential to map deciduous forests (Figure 2).

Based on the tests described above, a large window was chosen to select the

initial and final dates for generating the mosaics. These dates were standardized across all

38 classification regions and for all years under consideration. The selection criteria

involved utilizing a six-month window between the months of April and September, with a

maximum limit (Figure 3). The pixels identified during this defined period were found to

be more effective in resolving the mapping issues that arose from the narrower window

tests. To ensure the quality of yearly mosaics over the Cerrado biome, a visual inspection

was conducted. In Collection 8.0, we used Landsat 5 data from 1985 to 2010, with the

exception of the years 2001 and 2002 due to technical failures in the TM sensor. Instead,

Landsat 7 data was used in these years. Furthermore, Landsat 7 data was also used in

2011 and 2012. Landsat 8 data was used from 2013 to 2022. As a result, we obtained 38

Landsat surface reflectance mosaics, ranging from 1985 to 2022 (Figure 4).



Figure 2. False-color (SWIR1-NIR-Red) composite mosaics at the end of the rainy season and the

end of the dry season in the Cerrado biome.

Figure 3. Time-window used to build the yearly classification mosaics used in the MapBiomas

Collection 8.0 in the Cerrado biome.



Figure 4. Annual Landsat mosaics for the Cerrado biome from 1985 to 2022. These mosaics are

derived from the medians of SWIR1-NIR-Red bands. The blue box represents mosaics from

Landsat 5 (TM), the yellow box represents mosaics from Landsat 7 (ETM), and the green box

represents mosaics from Landsat 8 (OLI).

3. CLASSIFICATION

The classification process employed in Collection 8.0 was carried out through the

application of region-specific Random Forest models, each individually calibrated for



different regions and years, utilizing training samples derived from consistent

classifications in Collection 7.1. To ensure accuracy, a GEDI-based methodology was

employed to remove outliers from stable pixels. The resulting classification scheme

comprised ten land use and land cover (LULC) classes, which included the integration of

the Rocky Outcrop theme. In addition to classifying the native vegetation (NV),

anthropogenic classes like Pasture and Agriculture were also charted to complete the

Cerrado landscape mosaic. In the subsequent subsections, the procedures adopted in the

Collection 8.0 classification are presented: training samples and parameters (3.1),

hyperparameter calibration and feature space selection (3.2), rock outcrop classification

(3.3) and a comprehensive description of the overall classification scheme (3.4).

3.1. Training samples and parameters

During the construction of Collection 8.0, the classification process involved the

utilization of Random Forest models, with each region and year having its own model.

These models were calibrated using training samples extracted from stable areas in the

Collection 7.0 classification over the 37-year period. To ensure accuracy and reliability, the

training samples were derived from reference spatial datasets for Non-Vegetated areas

and NV loss, in addition to employing a GEDI-based methodology that effectively

eliminated outliers from stable pixels. The procedure used for eliminating outliers

remained consistent with that of Collection 7.1. Moreover, to enhance precision, the

canopy height model proposed by Lang et al. (2022) played a crucial role in excluding

stable pixels with erroneous canopy height values for each NV class. The remarkable

accuracy gain achieved with the introduction of this procedure in Collection 7.0, which

showed an accuracy improvement of +0.9%. To identify and remove spurious pixels, the

following criteria were employed:

A. Forest Formation with canopy height lower than 6 meters

B. Savanna Formation with canopy height higher than 12 meters

C. Wetland with canopy height higher than 15 meters

D. Grassland Formation with canopy height higher than 6 meters

After applying these adjustments, each classification unit (region) was allocated a

sample size of 7,000 training samples, proportionally distributed according to the stable

area of each classification in Collection 7.1, using the year 2000 as the reference. This

allocation ensured that each class was adequately represented in the training dataset. For

classes that comprised less than 10% of a region, a minimum of 700 samples was assigned

to ensure sufficient representation. The class “River, Lake, and Ocean” had a specific



minimum number of samples (n = 250) to minimize class-specific commission errors, just

as in Collection 7.1. This approach aimed to improve the accuracy of the classification

results and ensure that classes with low representation were adequately accounted for

during the classification procedure.

3.2. Hyperparameters calibration and Feature Space selection

In Collection 8.0, the first iteration of regionalized feature space selection for

Cerrado classification was carried out. The feature space consisted of a universe of 119

variables that are common to all biomes, including annual mosaic bands listed in Table 2,

as well as six variables specific to the Cerrado, previously used in Collection 7.1, as listed

in Table 3. From this set of variables, 80 were selected to define the feature space for each

region. The process began by randomly selecting eight annual mosaics, comprising 20% of

the time series length, equivalent to 38 years for Collection 8.0. Within these mosaics,

training samples were organized consistently with the main classification workflow, as

illustrated in Figure 5. This regionalized feature space selection allowed for the adaptation

of the classification models to the specific characteristics and variations of each Cerrado

region, leading to improved classification accuracy.

Figure 5. Hyperparameter tuning and feature-space regionalization workflow. Cylinder boxes

represent input/output datasets; rectangle boxes point to key processing steps. Arrows indicate

the flow of processing. Each arrow contains blue text labeling the data type/structure used in the

step. Gray texts near boxes offer details about the data (cylinder) or parameters (rectangle). The

red text indicates the level of the loop in which each step runs.



During the hyperparameter calibration process for Collection 8.0, Random Forest

classifiers were tested with various configurations of hyperparameters, including the

number of classification trees (ntree = 100–300) and the number of randomly sampled

variables for each tree (mtry = 5–22). A cross-validation analysis was executed for every

hyperparameter combination into a 10×3 schema and repeated 10 times for each

combination with subsampling and permutation. Subsequently, the resulting model

performance statistics were compiled and retained. To determine the optimal

hyperparameters for the final models, we identified the mean number of trees at which

the model's overall accuracy stabilized and selected the mean value for mtry that yielded

the highest overall accuracy. We ranked the variables based on their importance score,

and the top-performing 80 variables were selected as the feature space for each region.

Table 2. Feature space subset of the 119 variables considered in the classification of the Cerrado

biome in the MapBiomas Collection 8.0. Column “statistic” refers to the set of per pixel statistical

reducers used for each variable: a) amplitude: variation of the index considering the pixel values

within the temporal mapping window; b) median: per year median considering the temporal

window; c) median_dry: seasonal median below NDVI first quartile; d) median_wet: seasonal

median above NDVI first quartile; e) standard deviation: pixel standard deviation considering

values within the temporal window; f) lower annual pixel value within the temporal window.

Type Name Formula Statistics Reference

Blue
Band 1 (L5 and L7)

Band 2 (L8)

median,
median_dry,
median_texture,
median_wet,
minimum,
stdDev

USGS

Green
Band 2 (L5 and L7)

Band 3 (L8)

median,
median_dry,
median_texture,
median_wet,
minimum,
stdDev

USGS

Red
Band 3 (L5 and L7)

Band 4 (L8)

median, median_dry,
median_wet,
minimum,
stdDev

USGS

Landsat
band

NIR
Band 4 (L5 and L7)

Band 5 (L8)

median, median_dry,
median_wet,
minimum,
stdDev

USGS



SWIR 1
Band 5 (L5 and L7)

Band 6 (L8)

median, median_dry,
median_wet,
minimum,
stdDev

USGS

SWIR 2
Band 7 (L5 and L7)

Band 8 (L8)

median, median_dry,
median_wet,
minimum,
stdDev

USGS

Cellulose Absorption
Index

CAI = SWIR2 / SWIR1
median,
median_dry,
stdDev

Nagler et al.
2003

Enhanced Vegetation
Index 2

EVI 2 = 2.5 × (NIR - Red) / (NIR + 2.4
× Red + 1)

amplitude,median,
median_dry,
median_wet,
stdDev

Parente et
al., 2018

Green Chlorophyll
Vegetation Index

GCVI = (NIR / Green - 1)
median, median_dry,
median_wet, stdDev

Burke et al.,
2017

Hall Cover
Hall Cover = (- Red × 0.017 - NIR ×

0.007 - SWIR2 × 0.079 + 5.22)
median, stdDev

Hall et al.,
2006

Spectral
Index

Normalized Difference
Vegetation Index NDVI = (NIR - Red) / (NIR + Red)

amplitude, median,
median_dry,
median_wet, stdDev

Rouse et al.,
1974

Normalized Difference
Water Index

NDWI = (NIR - SWIR1) / (NIR +
SWIR1)

amplitude,median,
median_dry,
median_wet,
stdDev

Gao et a.,
1996

Photochemical
Reflectance Index

PRI = (Blue - Green) / (Blue + Green)
median, median_dry,
median_wet

Gamon et al.,
1992

Soil-Adjusted
Vegetation Index

SAVI = 1.5 × (NIR - Red) / (NIR + Red
+ 0.5)

median, median_dry,
median_wet, stdDev

Huete, 1988

Green Vegetation
Fraction

GV = Fractional abundance of green
vegetation within the pixel

amplitude
maximum,
median, median_dry,
median_wet,
minimum, stdDev

Souza et al.,
2005

Green Vegetation
Shade Fraction

GVS = GV / (GV + NPV + Soil +
Cloud)

amplitude, maximum,
median, median_dry,
median_wet,
minimum, stdDev

Housman et
al., 2018

Fraction

Normalized Difference
Fraction Index

NDFI = (GVS - (NPV + Soil)) / (GVS +
(NPV + Soil))

amplitude, maximum,
median, median_dry,
median_wet,
minimum, stdDev

Souza et al.,
2005



Non-photosynthetic
Vegetation Fraction

NPV = Fractional abundance of
non-photosynthetic vegetation

within the pixel

amplitude, maximum,
median, median_dry,
median_wet,
minimum, stdDev

Souza et al.,
2005

Savanna Ecosystem
Fraction Index

SEFI = (GV + NPV_S - Soil) / (GV +
NPV_S + Soil)

median, median_dry,
stdDev

Alencar et
al., 2020

Shade Fraction
Shade = 100 - (GV + NPV + Soil +

Cloud)
median

Housman et
al., 2018

Soil Fraction
Soil = Fractional abundance of soil

within the pixel

amplitude, maximum,
median, median_dry,
median_wet,
minimum, stdDev

Souza et al.,
2005

Wetland Ecosystem
Fraction Index

WEFI = ((GV + NPV) - (Soil + Shade))
/ ((GV + NPV)) + (Soil + Shade))

amplitude, median,
median_wet, stdDev

Rosa, 2020

Terrain Slope ALOS DSM: Global 30 m identity
Tadono et
al., 2014

Variable importance for each regional preliminary model was assessed by

measuring the mean decrease in accuracy when a particular variable was excluded from

the model. We utilized the Mean Decrease in Gini coefficient, which quantifies the

contribution of each variable to the uniformity of nodes and leaves in the Random Forest

models. A higher Mean Decrease Gini value for a specific variable indicates its greater

impact in determining the accuracy of the model. This process allowed us to refine the

feature space and create region-specific Random Forest models, enhancing the precision

of the classification results for the Cerrado biome in Collection 8.0. Moreover, as a result

of the distinct attributes of the Cerrado biome, we have incorporated supplementary

bands into our feature set, as demonstrated in Table 3.

Table 3. Complementary bands added to the Cerrado feature space in Collection 8.0.

Name Formula Statistics Reference

Latitude
ee.Image.pixelLonLat()

.select([‘latitude’])
identity Geolocation

cos(Longitude)
cos(ee.Image.pixelLonLat()

.select([‘longitude’]))
identity Geolocation

sen(Longitude)
sen(ee.Image.pixelLonLat()

.select([‘longitude’]))
identity Geolocation

Time Since the Last Fire TSLF = Current year - Year of the last fire identity
Alencar et al.,

2022



Height Above the
Nearest Drainage

HAND Global 30m identity
Donchyts et al.,

2016

3yr NDVI Amplitude
NDVI from current year to -2 years:

min(median_dry) - max(median_wet)
identity

Alencar et al.,
2020

3.3. Rocky Outcrop classification

In Collection 7.0, we have incorporated the BETA version of the Rocky Outcrop

classification. This classification comprises a set of rock outcrops, which are remarkably

stable, and encompass sedimentary, igneous, or metamorphic features. It is worth noting

that certain parts of "campos rupestres" may also be included in this classification. The

Rocky Outcrop class is characterized by monolithic or clustered elevations that stand out

as isolated features in the surrounding landscape. It is frequently observed in regions with

arid and semi-arid climates, where vegetation is sparse or even absent, as depicted in

Figure 6. Due to its distinctive features and geological significance, rocky outcrops often

attract anthropogenic activities, particularly mineral extraction.

Figure 6. Example of landscapes mapped as Rocky Outcrop in the Collection 8.0. A) “Serra do

Espinhaço”; A1) Landsat false-color composition (SWIR1-NIR-Red) for the year 2021—Pink arrow

point the approximated localization of the field photo; A2) Field photo (credits to TMbux); B)

“Serra da Canastra”; B1) false-color composition (SWIR1-NIR-Red) for the year of 2021; B2) Field

photo (credits to Mario L.S.C Chaves).



Despite the independent implementation of the Rocky Outcrop's classification,

the methodological approach used was similar to that applied for the overall map. The

classification schema for Rocky Outcrops is presented in Figure 7, depicting the specific

criteria and features used to distinguish this class from other land cover types in the

Cerrado biome. The approach aimed to accurately identify and delineate the distinct rocky

outcrop areas in the region, accounting for their geological characteristics and ecological

importance. The classification provides a representation of the distribution and extent of

rocky outcrops within the Cerrado biome.

Figure 7. Overview of the methodology for the Rocky Outcrop classification. Each gray geometry

(cylinders for databases and rectangles for processes) represent a key step in the classification

schema—with the respective name inside. The gray text near databases and processes offers a

short description of the step, while the green text highlights the main differences among stepwise

classification. Arrows with a continuous black line connecting the key steps represent the main

direction of the processing flux. In contrast, arrows with dotted black lines represent the

databases that feed the main processes. Red text inside arrows refers to the asset type in the

Google Earth Engine, while blue text offers a short description of the asset content.

In Collection 8.0, the Rocky Outcrop classification underwent refinements and

improvements to enhance its representation in the Cerrado biome. The BETA version of

this classification was initially introduced in Collection 7.0, and since then, efforts were

made to further optimize and refine the process. The overall processing flow for the Rocky



Outcrop classification in Collection 8.0 remained similar to that used in Collection 7.0.

However, to increase the accuracy and coverage of rocky outcrop mapping, additional

classification areas were incorporated, allowing a more comprehensive identification of

these geological features in the Cerrado biome. Moreover, adjustments were made to the

selection of samples per year, fine-tuning the classification process for improved results.

Through these refinements and improvements, Collection 8.0 provides an updated and

enhanced representation of rocky outcrops in the Cerrado biome.

A series of tests were performed to determine the most suitable strategy for the

inclusion of the Rock Outcrop in the native vegetation (NV) map of the Cerrado without

compromising the overall quality of the map. The classification of rock outcrops was

addressed in an independent workflow, delimiting an empirical area of interest (AOI). The

processing was divided into two steps, initially by visual inspection and later using the

stable pixels from the classification obtained in the first round independently.

During the first stage, an interpreter examined Landsat images covering all

classification regions of the Cerrado to identify the main rocky outcrops in the biome.

Three types of outcrops were established based on this analysis: Bedrock, Slope/Erosion

Front, and Lajedos, considering the different geological formations present in the biome.

The visual inspection was supported by reference data from CPRM (Companhia de

Pesquisa de Recursos Minerais) and Geomorphometric data (Geomorpho 90). Using this

information, a dataset comprising 2,086 stable rock outcrop points was created, covering

the period from 1985 to 2021. These samples were used in the first round of classification,

defining an AOI with an 80 km buffer around each sample point.

To avoid misclassification of native vegetation, especially in pasture areas, a

multi-class approach was adopted. This involved considering stable samples of the same

classes present in the general map and additional stable samples of rock outcrops limited

to the AOI. To balance the samples, the entire AOI was treated as a single classification

unit, distributing 13,000 samples per year. The proportion of bedrock samples was fixed at

10%, while the remaining 90% was proportionally distributed according to other land

covers and land uses. Post-processing filters, such as gap-fill, frequency, and spatial, were

implemented to improve the classification results from this first step. For more detailed

information, please refer to Section 4 of this ATBD.

The second processing step was conducted using the results of the first

classification round. Instead of using the rock outcrop samples obtained by visual

inspection, the stable pixels from the rock outcrop classification of the first round were

chosen and treated as new samples, as were the other classes. The balance of 10% for the

rock outcrop samples was maintained, considering their relative proportional area within

the AOI. For the second round of classification, use “ee.classifier.SmileRandomForest” was

used, and the post-processing filters were applied again. From the results obtained, only

the rock outcrop class (29) was kept, discarding all other classes classified in that



particular workflow. The rock outcrop class was then integrated into our overall map

independently of the other classes present in the native vegetation map.

3.4. Classification scheme

In the context of MapBiomas Collection 8.0, the classification of Landsat mosaics

for the Cerrado biome encompassed a total of ten land use and land cover (LULC) classes,

as detailed in the MapBiomas legend (Table 5). Beyond classifying NV, we also included

the anthropogenic classes of Pasture and Agriculture to complete the Cerrado landscape

mosaic and ensure there were no omission or commission errors over NV classes.

However, as these two classes were also charted by their corresponding cross-cutting

themes, we reclassified all pixels consisting of Pasture or Agriculture that we had

previously charted into the class of "Mosaic of Uses" (21). Finally, we integrated the

resultant map with the cross-cutting themes. The general methodological scheme applied

to the Cerrado NV classification in Collection 8.0 is presented in Figure 8.

Table 5. Land cover and land use categories used for the Landsat mosaics classification for the

Cerrado biome in MapBiomas Collection 8.0.Classes with " * " are those classified individually but

converted into the Use Mosaic class before integration.

Legend class of Collection 8.0 ID Color

Forest Formation 3  

Savanna Formation 4  

Wetland 11

Grassland 12  

Pasture* *

Agriculture* *  

Mosaic of Uses 21

Other Non-Vegetated Areas 25  

Rocky Outcrop 29

River, Lake and Ocean 33  



Figure 8. Overview of the methodology for Cerrado native vegetation classification in Collection

8.0. Each gray geometry (cylinders for databases and rectangles for processes) represent a key

step in the classification schema—with the respective name inside. The gray text near databases

and processes offers a short description of the step, while the green text highlights the main

innovations in Collection 8.0. Arrows with a continuous black line connecting the key steps

represent the main direction of the processing flux. In contrast, arrows with dotted black lines

represent the databases that feed the main processes. Red text inside arrows refers to the asset

type in the Google Earth Engine, while blue text offers a short description of the asset content.

The development of the Collection 8.0 annual maps for the Cerrado biome from

1985 to 2022 was executed through a series of well-defined stages.

1. Stable areas were defined by taking into account Collection 7.1 (1985-2021),

reference spatial datasets, and GEDI-based filtering for native vegetation areas.

Urban area pixels were employed as a proxy for collecting samples of the

Non-Vegetated Area class.

2. A visual-inspection-based training dataset was created specifically for the Rocky

Outcrop class.

3. The area proportion of all classes was assessed to balance the sample set for each

run of the classification model per region and per year.



4. A minimum sample size per class was set to 700 (250 for the "River, Lake and

Ocean" class, covering less than 10% of the region), and a maximum sample size

per class was set to 7,000.

5. The best hyperparameters for each classification region were obtained using a

heuristic tune-grid, and each classifier (per region and per year) was trained using

balanced samples and the novel regionalized feature space.

6. Classification was performed using Random Forest, as implemented in the 'ee

classifier.smileRandomForest' function into the Google Earth Engine platform.

7. Two distinct maps were created, one encompassing all classes in Collection 7.0

(known as the general map), and the second focused solely on mapping Rocky

Outcrop within the newly expanded area of interest.

8. The classification of the Rocky Outcrop theme was integrated into the Native

Vegetation map.

4. POST-CLASSIFICATION

The pixel-based classification method, employed with individual runs for each

year in a long temporal series, necessitated the implementation of post-classification

spatial and temporal filters to ensure consistency and eliminate classification errors. The

post-classification process encompassed several filters, including the gap-fill procedure

and incidence, temporal, frequency, and spatial filters, each designed to refine the

classification results and enhance the accuracy of the final map. These filters, detailed

below, played a crucial role in improving the overall reliability of Collection 8.0.

4.1. Temporal Gap-Fill filter

The Temporal Gap-Fill Filter played a crucial role in addressing missing data or

gaps resulting from cloud-covered or cloud-shadowed pixels in the images. The filter

aimed to fill these no-data values with the temporally nearest future valid classification

available for each pixel. In cases where no future valid classification was available, the

no-data value was instead replaced with the previous valid classification. As a result of the

Temporal Gap-Fill Filter, the final classified map should generally contain very few gaps,

only persisting in cases where a specific pixel remained consistently classified as no-data

throughout the entire temporal series.



4.2. Incidence filter

In order to improve the accuracy and reliability of the classification results, we

implemented an Incident Filter to address excessive changes between classes observed

over the 38-year temporal series. Unlike previous versions, this filter specifically targeted

excessive changes related to natural-to-anthropic and anthropic-to-natural transitions.

Noise associated with excessive changes involving only NV classes was addressed

separately using the Frequency Filter (see Section 4.4).

First, we aggregated the annual maps into three classes: Natural (Forest

Formation, Savanna Formation, Grassland, Wetland), Anthropic (Pasture, Agriculture,

Mosaic of Use), and Other (River, Lake, Ocean, and Non-Observed). We then masked the

annual classifications for Natural and Anthropic use only and derived a map indicating the

number of changes each pixel underwent during the time series, excluding transitions

involving the “Other” class. In this layer, pixel labeling was executed by taking into account

the quantity of neighboring pixels that underwent similar changes in number (i.e., patch

size). Pixels that changed more than ten times and were connected to fewer than seven

pixels with the same number of changes were identified as border pixels with noise. For

these pixels, their classification was reset to the most frequent class in their original

trajectory (i.e., before aggregation). Pixels that changed more than ten times and were

connected to more than six pixels with the same number of changes were considered

patches of spurious transition. For these pixels, their classification was Anthropic Use.

This approach was chosen because the underlying errors causing noise in border

pixels are different from those causing larger patches with excessive class changes. Border

pixels exhibit excessive class changes due to spectral mixture in Landsat pixels that contain

more than one thematic target. On the other hand, larger patches with excessive class

changes are likely due to NV commission errors, as such regimes of loss and regrowth are

ecologically unrealistic. The threshold of ten changes was determined to achieve an

average persistence time of seven years for Natural or Anthropic use, considering the

38-year time series. This is aligned with the growth cycle of planted forests and perennial

crops in the Cerrado, which can be confused with natural vegetation by the classifier due

to their spectral similarities. Figure 9 provides an illustrative example of the rationale

behind this filter and highlights the improvements achieved in Collection 8.0



Figure 9. Two examples of the Incidence Filter used to eliminate excessive changes in classification

trajectories. Sequences A and E depict the original classification trajectories as observed post the

Gap Fill filtering procedure. Sequences B and F showcase the resultant trajectories after applying

the Collection 7.1 Incidence Filter. Sequences C and G represent the aggregated versions of

sequences A and E, serving as inputs for the Incidence Filter integrated into Collection 8.

Sequences D and H demonstrate the post-filtered classifications yielded by the implementation of

the Incidence Filter in Collection 8.

4.3. Temporal filter

The temporal filter implemented in Collection 8.0 plays a crucial role in

addressing temporal inconsistencies (Figure 10). The filter was conducted in two distinct

phases to ensure a comprehensive evaluation of temporal spurious transitions. In the first

phase, the temporal filter focuses on identifying and correcting spurious transitions

between the NV and Anthropic use classes. In the second phase, the temporal filter

targets unrealistic trajectories that involve NV-to-NV transitions. For instance, it is not

ecologically plausible for a pixel to change from Forest formation to Grassland and then

revert to Forest formation within a short timeframe, such as a five-year period. The filter

evaluates the temporal patterns of such NV-to-NV transitions and replaces them with

more plausible classifications based on the surrounding temporal context.



The temporal filter has two phases. In the first phase, it compares the trajectories

of all pixels with reference trajectories that represent the expected behavior for NV-loss or

NV-regrowth events. This process is carried out iteratively, starting with the most recent

years in the time series. For NV-loss, the reference trajectory is a 4-year window. The first

two years are classified as NV, followed by a transition to Mosaic of Use for at least one

additional year. If the focal pixel (i.e., the candidate for change) does not follow this

trajectory, the conversion in the focal year is considered invalid. To handle focal pixels with

spurious losses, the reclassification rule prioritizes the most recent information available

in the time series. The focal pixel is then reclassified to the same class as its temporal

neighbor in the following year.

A similar procedure is carried out for NV-regrowth filtering, but applying a 5-year

temporal window, and the reference trajectory involves the first two years classified as

Mosaic of Use. This is followed by a transition to NV for the focal pixel, and persistence as

NV for two additional years. Any deviations from this reference trajectory are considered

spurious changes, and the transition is invalidated by reclassifying the focal pixel to the

same class as its temporal neighbor in the most recent year. It's important to note that the

temporal filter is not applied to the years 1985, 1986, and 2022. These years are

specifically used for evaluating persistence criteria in the temporal neighborhood of a

given focal pixel. Additionally, the year 2021 is not filtered for NV-regrowth because an

additional year is required in the temporal window defined for this reference trajectory.

Figure 10. The effect of the Temporal Filter on a theoretical classification trajectory (original). The

sequence labeled 'old filter' illustrates the filtered trajectory employing the Collection 7.1

implementation, while the sequence labeled 'new filter' corresponds to the trajectory utilizing the

Collection 8 implementation (initial phase).

The second and final phase in the Temporal Filter implemented in Collection 8.0

aims at eliminating trajectories that are not coherent and ecologically realistic over time

and that remain after the first phase is completed. This filter follows a series of sequential

steps:



1. The filter evaluates all pixels in a 5-year (from 1986 to 2018) and 4-year (from 1986

to 2019) moving window. It corrects any pixel value that shows a specific class in

the previous year (year -1), undergoes a change in the current year, and then

returns to the initial class in the subsequent years (year +2 or +3). This process was

applied for each class in this order: Savanna formation (4), Forest Formation (3),

Grassland Formation (12), Wetland (11), Mosaic of Uses (21), River, Lake, and

Ocean (33), and Other Non-vegetated Area (25).

2. Similar to the first step, the filter uses a 3-year moving window (from 1986 to

2020) to correct middle years concerning -1 and +1 years for each class in the

same order as in the first step.

4.4. Frequency filter

The Frequency Filter was exclusively applied to pixels classified as native

vegetation for at least 90% of the time series. For pixels meeting this criterion, if a

particular class, such as Forest Formation, was assigned to the pixel over more than 75%

of the time, that class was confirmed as the classification for the entire period. The same

rule was applied to the Savanna Formation, Wetland, and Grassland Formation classes,

but with a frequency criterion of 50% of the time series. Regarding the Rocky Outcrop

class, a frequency criterion of 70% was applied in the first round of classification, and this

was increased to 90% in the second round.

This application of the frequency filter resulted in a more stable classification of

native vegetation classes. Notably, the filter also helped to remove noise present in the

first and last years of the classification, which cannot be adequately addressed by the

temporal filter alone. By considering the long-term frequency of each class assignment,

the frequency filter ensures a more reliable representation of the dominant land cover

types in the Cerrado biome throughout the 38-year time series. It provides an additional

layer of consistency, refining the classification and minimizing uncertainties related to

occasional temporal fluctuations in the pixel classification over the years.

4.5. Spatial filter

The spatial filter implemented in Collection 8.0 plays a crucial role in refining the

classification accuracy by addressing misclassifications at the edges of pixel groups. It

utilizes the "connectedPixelCount" function, inherent to the Google Earth Engine

platform, which identifies connected components (neighbors) sharing the same pixel

value. Through this approach, isolated pixels that lack the minimum required number of



connected identical neighbors are considered for further assessment. The spatial filter

sets a minimum connection value of six connected pixels, corresponding to an area of

approximately 0.54 hectares. This implies that for a pixel to preserve its classification, it is

necessary for it to possess a minimum of six adjacent pixels that share an identical value.

By setting a minimum mapping unit, the spatial filter helps eliminate spurious noise and

artifacts caused by isolated pixels that do not conform to the prevailing land cover

patterns within the Cerrado biome.

4.6. Geomorphological filter

The geomorphology filter plays a critical role in refining the classification of

wetlands within the Cerrado biome, taking into account their spectral similarities with

water bodies. Geomorphological and geological factors significantly influence the

wetlands in the Cerrado region. For the filter, the data of geomorphological units from

IBGE (Brazilian Institute of Geography and Statistics) was used to delineate relief units

associated with wetlands and increase the accuracy of the classification. For each year,

the classification process is filtered based on specific geomorphological conditions. If the

land use class is “12” (Wetlands) and the geomorphological unit is “23” (“floodplain”) or

“29” (“fluviolacustre plain”), the land use class is reclassified to “11” (Campestre

formation). This reclassification is applied to regions where wetlands share similarities

with floodplains or fluviolacustre plains. On the other hand, in areas characterized by

other geomorphological units, the Wetlands classification remains unchanged.

4.7. Integration with cross-cutting themes

In the integration of cross-cutting themes and biomes' maps for each year from

1985 to 2022. This procedure was governed by a set of well-defined prevalence rules, as

outlined in Table 6. Notably, there was one singular case in which the general prevalence

rules for the Cerrado biome did not apply. In this instance, Pasture (15), Citrus (47), and

Cotton (62) had a higher prevalence than Savanna Formation (4) and Grassland Formation

(12), except within protected areas. Importantly, these prevalence rules do not apply

within Environmental Protection Areas (APA). In APAs, the general rules are followed for

the integration of cross-cutting themes and biomes' maps.

Table 6. General prevalence rules - Mapbiomas Collection 8.0

Class Pixel value Prevalence

Mining 30 1



Beach and Dune 23 2

Mangrove 5 3

Aquaculture 31 4

Salt Flat 32 5

Urban Infrastructure 24 6

Sugar Cane 20 7

Soybean 39 8

Rice 40 9

Other Temporary Crops 41 10

Perennial Crop 36 11

Coffee 46 12

Citrus 47 13

Other Perennial Crops 48 14

Temporary Crop 19 15

Forest Plantation 9 16

Rocky Outcrop 29 17

Other Non Vegetated Areas 25 18

River, Lake and Ocean 33 19

Forest Formation 3 20

Savanna Formation 4 21

Wetland 11 22

Grassland Formation 12 23

Pasture 15 24

Mosaic of Uses 21 25

5. VALIDATION

The accuracy analysis of Collection 8.0 was conducted using a dataset provided

by LAPIG/UFG, consisting of approximately 25,000 reference sample pixels for the Cerrado

biome. Each class of the MapBiomas legend was assigned to these samples for each year

between 1985 and 2022, by interpreters trained in Cerrado vegetation, ensuring expert

knowledge in the classification process. The analysis included calculations of global and

per-class accuracy, as well as omission and commission errors, and quantity and allocation



disagreements, using the confusion matrix that compared the reference dataset to the

sample pixels from the integrated (public) version of Collection 8.0.

The results showed that the global accuracy of Collection 8.0 was 84.7% in

Level-1 (a 0.47% improvement compared to Collection 7.1) and 76.1% in levels 2 and 3,

slightly lower than Collection 7.1. This makes Collection 8.0 in Level-1 the most accurate

compared to the other collections (Figure 11).

Figure 11. Global accuracy for the Cerrado biome at legend level 1 and level 3. The x-axis

represents the years (from 1985 to 2022), while the y-axis represents the global accuracy value

(from 0 = low accuracy to 1 = high accuracy). The colored lines indicate the accuracy per year of

the current collection (8.0 - red line) and the previous collections (7.1, 6, 5, 4.1 and 3.1 - orange to

dark blue lines). The overall average accuracies over the whole period for the last three collections

are indicated next to the respective lines.

The improvements in accuracy, when compared to Collection 7.1, were mainly

attributed to the decrease in commission errors across some of the native vegetation

classes. The Forest Formation and the Savanna Formation showed commission error

reductions of 13.19% and 4.51%, respectively. The Grassland exhibited a significant

increase, with a commission error of 18.92%. For omission errors, the Forest Formation

had a significant reduction of approximately 16.85%. For the Savannah class, a reduction

of about 3.87% was observed. However, the Grassland class showed an increase in the

omission error, around 7.21%. The observed accuracy metrics highlight the complexity of

the Cerrado biome classification, especially in the Grassland class, but also demonstrate

that the improvements implemented in Collection 8.0 reflect significant advances in the

overall accuracy of the mapping and a reduction in commission and omission errors in the



Forest and Savanna classes. All accuracy metrics are available at

https://mapbiomas.org/accuracy-statistics.
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