Artigos MapBiomas

Abaixo você pode encontrar e saber mais sobre os artigos científicos elaborados pela equipe do MapBiomas, eles são relacionados a assuntos que envolvem o mapeamento da cobertura e uso da terra no Brasil.

Alencar et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning

O artigo apresenta uma nova estratégia com uso de aprendizado de máquina para mapear áreas queimadas mensalmente de 1985 a 2020, usando mosaicos de imagens Landsat e valores mínimos de NBR. Este novo conjunto de dados contribui para o entendimento da dinâmica espacial e temporal de longo prazo dos regimes de incêndio que são fundamentais para projetar políticas públicas apropriadas para reduzir e controlar os incêndios no Brasil.


Cayo et al. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine.

Este artigo apresenta o mapeamento e a dinâmica de recuo das geleiras tropicais andinas (TAGs) a partir da utilização de imagens da série temporal Landsat de 1985 a 2020, com processamento e classificação digital das imagens de satélite na plataforma Google Earth Engine.


Coelho-Junior et al - Unmasking the impunity of illegal deforestation in the Brazilian Amazon: a call for enforcement and accountability

Este artigo traz uma perspectiva sobre a dinâmica dos alertas de desmatamento, validados e refinados pelo MapBiomas Alerta (http://alerta.mapbiomas.org/), na Amazônia brasileira e as ações dos órgãos públicos federais e estaduais de fiscalização, destacando a urgência de reduzir e combater o desmatamento.


Santos et al - Assessing the Wall-to-Wall Spatial and Qualitative Dynamics of the Brazilian Pasturelands 2010–2018, Based on the Analysis of the Landsat Data Archive

Neste estudo foi mapeada e avaliada a dinâmica espaço-temporal da qualidade das pastagens no Brasil, entre 2010 e 2018, considerando três classes de degradação: Ausente (D0), Intermediário (D1) e Grave (D2). Não houve variação na área total ocupada por pastagens no período avaliado, apesar da dinâmica espacial acentuada.


Cesar et al. - A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping

Aquicultura e salicultura são atividades econômicas relevantes na Zona Costeira brasileira (BCZ). No entanto, a discriminação automática de tais atividades de outras coberturas / usos relacionados à água não é uma tarefa fácil. Nesse sentido, as redes neurais convolucionais (CNN) têm a vantagem de prever o rótulo de classe de um determinado pixel, fornecendo como entrada uma região local (patches ou chips nomeados) em torno desse pixel. Tanto a natureza convolucional quanto a capacidade de segmentação semântica fornecem o classificador U-Net com a capacidade de acessar o "domínio de contexto" em vez de apenas pixel isolado valores. Apoiado no domínio do contexto, apresentamos os resultados das análises.